重庆市朝阳中学2022-2023学年高三第一次模拟考试数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《重庆市朝阳中学2022-2023学年高三第一次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《重庆市朝阳中学2022-2023学年高三第一次模拟考试数学试卷含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数,则( )ABCD2已知正项等比数列的前项和为,且,则公比的值为()AB或CD3中国古代数学著作算法统宗中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,
2、六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了( )A96里B72里C48里D24里4设函数恰有两个极值点,则实数的取值范围是( )ABCD5台球是一项国际上广泛流行的高雅室内体育运动,也叫桌球(中国粤港澳地区的叫法)、撞球(中国地区的叫法)控制撞球点、球的旋转等控制母球走位是击球的一项重要技术,一次台球技术表演节目中,在台球桌上,画出如图正方形ABCD,在点E,F处各放一个目标球,表演者先将母球放在点A处,通过击打母球,使其依次撞击点E,F处的目标球,
3、最后停在点C处,若AE=50cmEF=40cmFC=30cm,AEF=CFE=60,则该正方形的边长为( )A50cmB40cmC50cmD20cm6已知,则,的大小关系为( )ABCD7已知数列满足,且成等比数列.若的前n项和为,则的最小值为( )ABCD8在中,内角所对的边分别为,若依次成等差数列,则( )A依次成等差数列B依次成等差数列C依次成等差数列D依次成等差数列9已知,则( )ABCD10对于函数,定义满足的实数为的不动点,设,其中且,若有且仅有一个不动点,则的取值范围是( )A或BC或D11若,则“”是 “”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要
4、条件12复数的虚部是 ( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,若,则实数的取值范围为_14已知函数的定义域为R,导函数为,若,且,则满足的x的取值范围为_.15已知函数,若关于的方程恰有四个不同的解,则实数的取值范围是_.16已知无盖的圆柱形桶的容积是立方米,用来做桶底和侧面的材料每平方米的价格分别为30元和20元,那么圆桶造价最低为_元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列是各项均为正数的等比数列,且,成等差数列()求数列的通项公式;()设,为数列的前项和,记,证明:18(12分)如图,在四棱锥中,四边形是直
5、角梯形, 底面 ,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.19(12分)已知矩形纸片中,将矩形纸片的右下角沿线段折叠,使矩形的顶点B落在矩形的边上,记该点为E,且折痕的两端点M,N分别在边上.设,的面积为S.(1)将l表示成的函数,并确定的取值范围;(2)求l的最小值及此时的值;(3)问当为何值时,的面积S取得最小值?并求出这个最小值.20(12分)已知函数(I)当时,解不等式.(II)若不等式恒成立,求实数的取值范围21(12分)如图1,与是处在同-个平面内的两个全等的直角三角形,连接是边上一点,过作,交于点,沿将向上翻折,得到如图2所示的六
6、面体(1)求证:(2)设若平面底面,若平面与平面所成角的余弦值为,求的值;(3)若平面底面,求六面体的体积的最大值.22(10分)在直角坐标系中,曲线的参数方程为(为参数),坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若曲线、交于、两点,是曲线上的动点,求面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:利用的恒等式,将分子、分母同时乘以 ,化简整理得 详解: ,故选B点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面
7、有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意符号的正、负问题.2、C【解析】由可得,故可求的值.【详解】因为,所以,故,因为正项等比数列,故,所以,故选C.【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3) 为等比数列( )且公比为.3、B【解析】人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,计算,代入得到答案.【详解】由题意可知此人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,则,解得,从而可得,故.故选:.【点睛】本题考查了等比数列的应用,意在考查学生的计算能力和应用能
8、力.4、C【解析】恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【详解】由题意知函数的定义域为,.因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.故选:C【点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.5、D【解析】过点做正方形边的垂线,如图,设,利用直线三角形中的边角关系,将用表示出来,根据,列方程求出,进而可得正方形的边长.【
9、详解】过点做正方形边的垂线,如图,设,则,则,因为,则,整理化简得,又,得 ,.即该正方形的边长为.故选:D.【点睛】本题考查直角三角形中的边角关系,关键是要构造直角三角形,是中档题.6、D【解析】构造函数,利用导数求得的单调区间,由此判断出的大小关系.【详解】依题意,得,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.【点睛】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.7、D【解析】利用等比中项性质可得等差数列的首项,进而求得,再利用二次函数的性质,可得当或时,取到最小值.【详解】根据题意,可知为等差数列
10、,公差,由成等比数列,可得,解得.根据单调性,可知当或时,取到最小值,最小值为.故选:D.【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当或时同时取到最值.8、C【解析】由等差数列的性质、同角三角函数的关系以及两角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,从而可得结果.【详解】依次成等差数列, 正弦定理得,由余弦定理得 ,即依次成等差数列,故选C.【点睛】本题主要考查等差数列的定义、正弦定理、余弦定理,属于难题. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 重庆市 朝阳 中学 2022 2023 学年 第一次 模拟考试 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内