浙江省温州市普通高中2023届高考冲刺模拟数学试题含解析.doc
《浙江省温州市普通高中2023届高考冲刺模拟数学试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省温州市普通高中2023届高考冲刺模拟数学试题含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1已知实数满足线性约束条件,则的取值范围为( )A(-2,-1B(-1,4C-2,4)D0,42等比数列的各项均为正数,且,则( )A12B10C8D3如图网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为( )ABCD4已知实数满足约束条件,则的最小值为( )A-5B2C7D115已知等差数列的公差不为零,且,构成新的等差数列,为的前项和,若存在使得,则( )A10B11C12D136如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积( )ABCD7设,分别是椭圆的左、右焦点,过的直线交椭圆于,两点,且,则椭圆的离心率为
3、( )ABCD8点在曲线上,过作轴垂线,设与曲线交于点,且点的纵坐标始终为0,则称点为曲线上的“水平黄金点”,则曲线上的“水平黄金点”的个数为( )A0B1C2D39已知的垂心为,且是的中点,则( )A14B12C10D810要得到函数的图象,只需将函数的图象A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度11已知的内角的对边分别是且,若为最大边,则的取值范围是( )ABCD12已知复数,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13某次足球比赛中,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.
4、已知他们之间相互获胜的概率如下表所示.获胜概率0.40.30.8获胜概率0.60.70.5获胜概率0.70.30.3获胜概率0.20.50.7则队获得冠军的概率为_.14如图,在棱长为2的正方体中,点、分别是棱,的中点,是侧面正方形内一点(含边界),若平面,则线段长度的取值范围是_.15若函数恒成立,则实数的取值范围是_.16已知无盖的圆柱形桶的容积是立方米,用来做桶底和侧面的材料每平方米的价格分别为30元和20元,那么圆桶造价最低为_元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,且.(1)求的最小值;(2)证明:.18(12分)设复数满足(为虚数单位)
5、,则的模为_.19(12分)已知抛物线E:y22px(p0),焦点F到准线的距离为3,抛物线E上的两个动点A(x1,y1)和B(x2,y2),其中x1x2且x1+x21线段AB的垂直平分线与x轴交于点 C(1)求抛物线E的方程;(2)求ABC面积的最大值20(12分)已知.(1)若是上的增函数,求的取值范围;(2)若函数有两个极值点,判断函数零点的个数.21(12分)(1)已知数列满足:,且(为非零常数,),求数列的前项和;(2)已知数列满足:()对任意的;()对任意的,且.若,求数列是等比数列的充要条件.求证:数列是等比数列,其中.22(10分)已知实数x,y,z满足,证明:.参考答案一、选
6、择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】作出可行域,表示可行域内点与定点连线斜率,观察可行域可得最小值【详解】作出可行域,如图阴影部分(含边界),表示可行域内点与定点连线斜率,过与直线平行的直线斜率为1,故选:B【点睛】本题考查简单的非线性规划解题关键是理解非线性目标函数的几何意义,本题表示动点与定点连线斜率,由直线与可行域的关系可得结论2、B【解析】由等比数列的性质求得,再由对数运算法则可得结论【详解】数列是等比数列,故选:B.【点睛】本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键3、C【解析】利
7、用正方体将三视图还原,观察可得最长棱为AD,算出长度.【详解】几何体的直观图如图所示,易得最长的棱长为故选:C.【点睛】本题考查了三视图还原几何体的问题,其中利用正方体作衬托是关键,属于基础题.4、A【解析】根据约束条件画出可行域,再将目标函数化成斜截式,找到截距的最小值.【详解】由约束条件,画出可行域如图变为为斜率为-3的一簇平行线,为在轴的截距,最小的时候为过点的时候,解得所以,此时故选A项【点睛】本题考查线性规划求一次相加的目标函数,属于常规题型,是简单题.5、D【解析】利用等差数列的通项公式可得,再利用等差数列的前项和公式即可求解.【详解】由,构成等差数列可得即又解得:又所以时,.故选
8、:D【点睛】本题考查了等差数列的通项公式、等差数列的前项和公式,需熟记公式,属于基础题.6、C【解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可【详解】解:几何体的直观图如图,是正方体的一部分,PABC,正方体的棱长为2,该几何体的表面积:故选C【点睛】本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键7、C【解析】根据表示出线段长度,由勾股定理,解出每条线段的长度,再由勾股定理构造出关系,求出离心率.【详解】设,则由椭圆的定义,可以得到,在中,有,解得在中,有整理得,故选C项.【点睛】本题考查几何法求椭圆离心率,是求椭圆离心率的一个常用方法,通过几何关系,
9、构造出关系,得到离心率.属于中档题.8、C【解析】设,则,则,即可得,设,利用导函数判断的零点的个数,即为所求.【详解】设,则,所以,依题意可得,设,则,当时,则单调递减;当时,则单调递增,所以,且,有两个不同的解,所以曲线上的“水平黄金点”的个数为2.故选:C【点睛】本题考查利用导函数处理零点问题,考查向量的坐标运算,考查零点存在性定理的应用.9、A【解析】由垂心的性质,得到,可转化,又即得解.【详解】因为为的垂心,所以,所以,而, 所以,因为是的中点,所以故选:A【点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.10、D【
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省 温州市 普通高中 2023 高考 冲刺 模拟 数学试题 解析
限制150内