重庆市綦江区南州中学2023年高考数学全真模拟密押卷含解析.doc





《重庆市綦江区南州中学2023年高考数学全真模拟密押卷含解析.doc》由会员分享,可在线阅读,更多相关《重庆市綦江区南州中学2023年高考数学全真模拟密押卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1双曲线的渐近线方程是( )ABCD2算数书竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘
2、之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为( )ABCD3已知偶函数在区间内单调递减,则,满足( )ABCD4已知实数,函数在上单调递增,则实数的取值范围是( )ABCD5抛物线的准线与轴的交点为点,过点作直线与抛物线交于、两点,使得是的中点,则直线的斜率为( )ABC1D6已知复数满足,则( )AB2C4D37斜率为1的直线l与椭圆相交于A、B两点,则的最大值为A2BCD8五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水
3、、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )ABCD9下列选项中,说法正确的是( )A“”的否定是“”B若向量满足 ,则与的夹角为钝角C若,则D“”是“”的必要条件10设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为( )ABCD11若非零实数、满足,则下列式子一定正确的是( )ABCD12已知无穷等比数列的公比为2,且,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,若关于x的方程有且只有两个不相等的实数根,则实数a的取值范围是_
4、.14如果函数(,且,)在区间上单调递减,那么的最大值为_15在ABC中,BAC,AD为BAC的角平分线,且,若AB2,则BC_.16已知函数的图象在点处的切线方程是,则的值等于_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所(1)求甲、乙、丙三名同学都选高校的概率;(2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所(i)求甲同学选高校且乙、丙都未选高校的概率;(ii)记为甲、乙、丙三名同学中选高
5、校的人数,求随机变量的分布列及数学期望18(12分)已知椭圆()经过点,离心率为,、为椭圆上不同的三点,且满足,为坐标原点(1)若直线、的斜率都存在,求证:为定值;(2)求的取值范围19(12分)如图,四棱锥中,侧面为等腰直角三角形,平面(1)求证:平面;(2)求直线与平面所成的角的正弦值20(12分)已知直线是曲线的切线.(1)求函数的解析式,(2)若,证明:对于任意,有且仅有一个零点.21(12分)2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所
6、得成绩(单位:分)统计结果用茎叶图记录如下:()试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;()从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求的分布列和数学期望;()为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出的最小值.(结论不要求证明)22(10分)已知直线:(为参数),曲线(为参数)(1)设与相交于,两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为
7、原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用2、C【解析】将圆锥的体积用两种方式表达,即,解出即可.【详解】设圆锥底面圆的半径为r,则,又,故,所以,.故选:C.【点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.
8、3、D【解析】首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【详解】因为偶函数在减,所以在上增,.故选:D【点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.4、D【解析】根据题意,对于函数分2段分析:当,由指数函数的性质分析可得,当,由导数与函数单调性的关系可得,在上恒成立,变形可得,再结合函数的单调性,分析可得,联立三个式子,分析可得答案.【详解】解:根据题意,函数在上单调递增,当,若为增函数,则,当,若为增函数,必有在上恒成立,变形可得:,又由,可得在上单调递减,则,若在上恒成立,则有,若函数在上单调递增,左边一
9、段函数的最大值不能大于右边一段函数的最小值,则需有,联立可得:.故选:D.【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.5、B【解析】设点、,设直线的方程为,由题意得出,将直线的方程与抛物线的方程联立,列出韦达定理,结合可求得的值,由此可得出直线的斜率.【详解】由题意可知点,设点、,设直线的方程为,由于点是的中点,则,将直线的方程与抛物线的方程联立得,整理得,由韦达定理得,得,解得,因此,直线的斜率为.故选:B.【点睛】本题考查直线斜率的求解,考查直线与抛物线的综合问题,涉及韦达定理设而不求法的应用,考查运算求解能力,属于中等题.6、A【解析】由复数除法求出,再由模的定义
10、计算出模【详解】故选:A【点睛】本题考查复数的除法法则,考查复数模的运算,属于基础题7、C【解析】设出直线的方程,代入椭圆方程中消去y,根据判别式大于0求得t的范围,进而利用弦长公式求得|AB|的表达式,利用t的范围求得|AB|的最大值【详解】解:设直线l的方程为yx+t,代入y21,消去y得x2+2tx+t210,由题意得(2t)21(t21)0,即t21弦长|AB|4故选:C【点睛】本题主要考查了椭圆的应用,直线与椭圆的关系常需要把直线与椭圆方程联立,利用韦达定理,判别式找到解决问题的突破口8、A【解析】列举出金、木、水、火、土任取两个的所有结果共10种,其中2类元素相生的结果有5种,再根
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 重庆市 綦江 区南州 中学 2023 年高 数学 模拟 密押卷含 解析

限制150内