陕西省西安市华山中学2023年高三一诊考试数学试卷含解析.doc
《陕西省西安市华山中学2023年高三一诊考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省西安市华山中学2023年高三一诊考试数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知定义在上的函数满足,且当时,则方程的最小实根的值为( )ABCD2已知函数,若函数的图象恒在轴的上方,则实数的取值范围为( )ABCD3已知函数,若对,且,使得,则实数的取值范围是( )A
2、BCD4我国古代数学家秦九韶在数书九章中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为( )ABCD5在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为( )ABCD6集合中含有的元素个数为( )A4B6C8D127双曲线:(),左焦点到渐近线的距离为2,则双曲线的渐近线方程为( )ABCD8在正方体中,点,分别为棱,的中点,给出下列命题:;平面;和成角为.正确命题的个数是( )A0B1C2D39已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是( )A该超市
3、2018年的12个月中的7月份的收益最高B该超市2018年的12个月中的4月份的收益最低C该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元10在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为( )A8B9C10D1111若复数(为虚数单位),则( )ABCD12过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若存在直线l与函数及的图象都相切,则实数
4、的最小值为_14已知抛物线,点为抛物线上一动点,过点作圆的切线,切点分别为,则线段长度的取值范围为_.15高三(1)班共有56人,学号依次为1,2,3,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为 16一个算法的伪代码如图所示,执行此算法,最后输出的T的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.18(12分)如图,在多面体中,四边形是菱形,平面,是的中点.()求证:平面平面;()求直线与平面所成的角的正弦值.19(12分
5、)已知六面体如图所示,平面,是棱上的点,且满足.(1)求证:直线平面;(2)求二面角的正弦值.20(12分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA平面ABCD,且PA=AD,E, F分别是棱AB, PC的中点.求证:(1) EF /平面PAD;(2)平面PCE平面PCD21(12分)已知函数,()若,求的取值范围;()若,对,都有不等式恒成立,求的取值范围22(10分)如图,在三棱柱中,、分别是、的中点.(1)证明:平面;(2)若底面是正三角形,在底面的投影为,求到平面的距离.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
6、要求的。1、C【解析】先确定解析式求出的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.【详解】当时,所以,故当时,所以,而,所以,又当时,的极大值为1,所以当时,的极大值为,设方程的最小实根为,则,即,此时令,得,所以最小实根为411.故选:C.【点睛】本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.2、B【解析】函数的图象恒在轴的上方,在上恒成立.即,即函数的图象在直线上方,先求出两者相切时的值,然后根据变化时,函数的变化趋势,从而得的范围【详解】由题在上恒成立.即,的图象永远在的上
7、方,设与的切点,则,解得,易知越小,图象越靠上,所以.故选:B【点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围3、D【解析】先求出的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范围即可.【详解】因为,故,当时,故在区间上单调递减;当时,故在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.又,且当趋近于零时,趋近于正无穷;对函数,当时,;根据题意,对,且,使得成立,只需,即可得,解得.故选:D.【点睛
8、】本题考查利用导数研究由方程根的个数求参数范围的问题,涉及利用导数研究函数单调性以及函数值域的问题,属综合困难题.4、A【解析】根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.5、A【解析】由已知可得到直线的倾斜角为,有,再利用即可解决.【详解】由F到直线的距离为,得直线的倾斜角为,所以,即,解得.故选:A.【点睛】本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于的方程或不等式,本题
9、是一道容易题.6、B【解析】解:因为集合中的元素表示的是被12整除的正整数,那么可得为1,2,3,4,6,,12故选B7、B【解析】首先求得双曲线的一条渐近线方程,再利用左焦点到渐近线的距离为2,列方程即可求出,进而求出渐近线的方程.【详解】设左焦点为,一条渐近线的方程为,由左焦点到渐近线的距离为2,可得,所以渐近线方程为,即为,故选:B【点睛】本题考查双曲线的渐近线的方程,考查了点到直线的距离公式,属于中档题.8、C【解析】建立空间直角坐标系,利用向量的方法对四个命题逐一分析,由此得出正确命题的个数.【详解】设正方体边长为,建立空间直角坐标系如下图所示,.,所以,故正确.,不存在实数使,故不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 陕西省 西安市 华山 中学 2023 年高 三一诊 考试 数学试卷 解析
限制150内