齐齐哈尔市重点中学2023年高三3月份第一次模拟考试数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《齐齐哈尔市重点中学2023年高三3月份第一次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《齐齐哈尔市重点中学2023年高三3月份第一次模拟考试数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1九章算术勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物
2、有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )ABCD2在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有( )A60种B70种C75种D150种3已知双曲线:(,)的焦距为.点为双曲线的右顶点,若点到双曲线的渐近线的距离为,则双曲线的离心率是( )ABC2D34已知的内角、的对边分别为、,且,为边上的中线,若,则的面积为( )ABCD5已知命题p:若,则;命题q:,使得”,则以下命题为真命题的是( )ABCD6设等比数列的前项和为,则“”是“”的( )A充分不必要B必要不充分C充要D既不充
3、分也不必要7已知函数的图像与一条平行于轴的直线有两个交点,其横坐标分别为,则( )ABCD8已知函数,则( )A2B3C4D59已知是双曲线的两个焦点,过点且垂直于轴的直线与相交于两点,若,则的内切圆半径为( )ABCD10已知,则( )A2BCD311已知抛物线y2= 4x的焦点为F,抛物线上任意一点P,且PQy轴交y轴于点Q,则 的最小值为( )ABClD112复数在复平面内对应的点为则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设是定义在上的函数,且,对任意,若经过点的一次函数与轴的交点为,且互不相等,则称为关于函数的平均数,记为.当_时,为的几何平均数.(只需写出
4、一个符合要求的函数即可)14命题“”的否定是_15的角所对的边分别为,且,若,则的值为_.16已知数列的前项和为,则满足的正整数的所有取值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,.(1)当为何值时,轴为曲线的切线;(2)用表示、中的最大值,设函数,当时,讨论零点的个数.18(12分)设函数,.(1)求函数的极值;(2)对任意,都有,求实数a的取值范围.19(12分)在直角坐标系x0y中,把曲线为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程(1)写出的普通方程和的直角
5、坐标方程;(2)设点M在上,点N在上,求|MN|的最小值以及此时M的直角坐标.20(12分)已知数列,其前项和为,若对于任意,且,都有.(1)求证:数列是等差数列(2)若数列满足,且等差数列的公差为,存在正整数,使得,求的最小值.21(12分)在平面直角坐标系中,设,过点的直线与圆相切,且与抛物线相交于两点(1)当在区间上变动时,求中点的轨迹;(2)设抛物线焦点为,求的周长(用表示),并写出时该周长的具体取值22(10分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为(1)求直线l的普通方程与曲线C的直角坐标
6、方程;(2)设点,直线l与曲线C交于不同的两点A、B,求的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意知:,设,则,在中,列勾股方程可解得,然后由得出答案.【详解】解:由题意知:,设,则在中,列勾股方程得:,解得所以从该葭上随机取一点,则该点取自水下的概率为故选C.【点睛】本题考查了几何概型中的长度型,属于基础题.2、C【解析】根据题意,分别计算“从6名男干部中选出2名男干部”和“从5名女干部中选出1名女干部”的取法数,由分步计数原理计算可得答案【详解】解:根据题意,从6名男干部中选出2名男干部,有种取法,
7、从5名女干部中选出1名女干部,有种取法,则有种不同的选法;故选:C【点睛】本题考查排列组合的应用,涉及分步计数原理问题,属于基础题3、A【解析】由点到直线距离公式建立的等式,变形后可求得离心率【详解】由题意,一条渐近线方程为,即,即,故选:A【点睛】本题考查求双曲线的离心率,掌握渐近线方程与点到直线距离公式是解题基础4、B【解析】延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.【详解】解:延长到,使,连接,则四边形为平行四边形,则,在中,则,得,.故选:B.【点睛】本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.5、B【
8、解析】先判断命题的真假,进而根据复合命题真假的真值表,即可得答案.【详解】,因为,所以,所以,即命题p为真命题;画出函数和图象,知命题q为假命题,所以为真.故选:B. 【点睛】本题考查真假命题的概念,以及真值表的应用,解题的关键是判断出命题的真假,难度较易.6、A【解析】首先根据等比数列分别求出满足,的基本量,根据基本量的范围即可确定答案.【详解】为等比数列,若成立,有,因为恒成立,故可以推出且,若成立,当时,有,当时,有,因为恒成立,所以有,故可以推出,所以“”是“”的充分不必要条件.故选:A.【点睛】本题主要考查了等比数列基本量的求解,充分必要条件的集合关系,属于基础题.7、A【解析】画出
9、函数的图像,函数对称轴方程为,由图可得与关于对称,即得解.【详解】函数的图像如图,对称轴方程为,又,由图可得与关于对称,故选:A【点睛】本题考查了正弦型函数的对称性,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.8、A【解析】根据分段函数直接计算得到答案.【详解】因为所以.故选:.【点睛】本题考查了分段函数计算,意在考查学生的计算能力.9、B【解析】首先由求得双曲线的方程,进而求得三角形的面积,再由三角形的面积等于周长乘以内切圆的半径即可求解.【详解】由题意将代入双曲线的方程,得则,由,得的周长为,设的内切圆的半径为,则,故选:B【点睛】本题考查双曲线的定义、方程和性质,考查三角形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 齐齐哈尔市 重点中学 2023 年高 月份 第一次 模拟考试 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内