浙江省瑞安市上海新纪元高级中学2022-2023学年高考数学考前最后一卷预测卷含解析.doc
《浙江省瑞安市上海新纪元高级中学2022-2023学年高考数学考前最后一卷预测卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省瑞安市上海新纪元高级中学2022-2023学年高考数学考前最后一卷预测卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知定义在上的函数的周期为4,当时,则( )ABCD2设变量满足约束条件,则目标函数的最大值是( )A7B5C3D23已知
2、双曲线的左、右焦点分别为、,抛物线与双曲线有相同的焦点.设为抛物线与双曲线的一个交点,且,则双曲线的离心率为( )A或B或C或D或4如图,四边形为正方形,延长至,使得,点在线段上运动.设,则的取值范围是( )ABCD5为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有( )A24B36C48D646设点是椭圆上的一点,是椭圆的两个焦点,若,则( )ABCD7是平面上的一定点,是平面上不共线的三点,动点满足 ,则动点的轨迹一定经过的( )A重心B垂心C外心D内心8已知
3、的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为( )ABCD9已知x,y满足不等式组,则点所在区域的面积是( )A1B2CD10已知为虚数单位,复数满足,则复数在复平面内对应的点在( )A第一象限B第二象限C第三象限D第四象限11在的展开式中,的系数为( )A-120B120C-15D1512已知,且,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知等比数列的各项均为正数,则的值为_.14不等式的解集为_15如图,是圆的直径,弦的延长线相交于点垂直的延长线于点求证:16函数在的零点个数为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。1
4、7(12分)记为数列的前项和,已知,等比数列满足,.(1)求的通项公式;(2)求的前项和.18(12分)已知函数f(x)|x1|x2|.若不等式|ab|ab|a|f(x)(a0,a、bR)恒成立,求实数x的取值范围19(12分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.20(12分)已知等差数列中,数列的前项和.(1)求;(2)若,求的前项和.21(12分)已知函数.(1)若在上是减函数,求实数的最大值;(2)若,求证:.22(10分)如图,四棱锥中,平面平面,若,四边形是平行四边形,且.()求证:;()若点在线段上,且平面,求二面角的余
5、弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【详解】定义在上的函数的周期为4,当时,.故选:A.【点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.2、B【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出约束条件,表示的可行域,如图,由可得,将变形为,平移直线,由图可知当
6、直经过点时,直线在轴上的截距最大,最大值为,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3、D【解析】设,根据和抛物线性质得出,再根据双曲线性质得出,最后根据余弦定理列方程得出、间的关系,从而可得出离心率【详解】过分别向轴和抛物线的准线作垂线,垂足分别为、,不妨设,则,为双曲线上的点,则,即,得,又,在中,由余弦定理可得
7、,整理得,即,解得或.故选:D.【点睛】本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题4、C【解析】以为坐标原点,以分别为x轴,y轴建立直角坐标系,利用向量的坐标运算计算即可解决.【详解】以为坐标原点建立如图所示的直角坐标系,不妨设正方形的边长为1,则,设,则,所以,且,故.故选:C.【点睛】本题考查利用向量的坐标运算求变量的取值范围,考查学生的基本计算能力,本题的关键是建立适当的直角坐标系,是一道基础题.5、B【解析】根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.【详解】当按照进行分配时,则有种不同的方案;当按照进行分配,则有种不同的
8、方案.故共有36种不同的派遣方案,故选:B.【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.6、B【解析】,故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系. 7、B【解析】解出,计算并化简可得出结论【详解】(),即点P在BC边的高上,即点P的轨迹经过ABC的垂心故选B【点睛】本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算是关键8、D【解析】因为的展开式中第
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省 瑞安市 上海 新纪元 高级中学 2022 2023 学年 高考 数学 考前 最后 一卷 预测 解析
限制150内