《黑龙江省大庆市第五十六中学2023年中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《黑龙江省大庆市第五十六中学2023年中考数学仿真试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1a、b互为相反数,则下列成立的是()Aab=1Ba+b=0Ca=bD=-12小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 , 这该
2、怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x5,于是,他很快便补好了这个常数,并迅速地做完了作业。同学们,你能补出这个常数吗?它应该是()A2B3C4D53某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()ABCD4关于x的方程=无解,则k的值为()A0或B1C2D35如图所示是8个完全相同的小正方体组成
3、的几何体,则该几何体的左视图是( )ABCD6已知一个多边形的内角和是1080,则这个多边形是( )A五边形B六边形C七边形D八边形7九章算术中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是类似地,图2所示的算筹图我们可以表述为()ABCD8直线yx4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PCPD值最小时点P的坐标为( )A(3,0)B(6,0)C(,0)D(,0)9二次函数y=ax2+bx+c(a
4、0)的图象如图,则反比例函数y=与一次函数y=bxc在同一坐标系内的图象大致是( )ABCD10平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )A60B50C40D30二、填空题(共7小题,每小题3分,满分21分)11观察下列等式:第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;请按以上规律解答下列问题:(1)列出第5个等式:a5=_;(2)求a1+a2+a3+an=,那么n的值为_12如图,反比例函数y(x0)的图象经过点A(2,2),过点A作ABy轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直
5、线l为对称轴,点B经轴对称变换得到的点B在此反比例函数的图象上,则t的值是()A1+B4+C4D-1+13计算(x4)2的结果等于_14关于x的方程kx2(2k+1)x+k+2=0有实数根,则k的取值范围是_15已知直线y=kx(k0)经过点(12,5),将直线向上平移m(m0)个单位,若平移后得到的直线与半径为6的O相交(点O为坐标原点),则m的取值范围为_16如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离
6、(即PC的长)为_km17在ABCD中,按以下步骤作图:以点B为圆心,以BA长为半径作弧,交BC于点E;分别以A,E为圆心,大于AE的长为半径作弧,两弧交于点F;连接BF,延长线交AD于点G. 若AGB=30,则C=_.三、解答题(共7小题,满分69分)18(10分)如图,AC是O的直径,点P在线段AC的延长线上,且PC=CO,点B在O上,且CAB=30(1)求证:PB是O的切线;(2)若D为圆O上任一动点,O的半径为5cm时,当弧CD长为 时,四边形ADPB为菱形,当弧CD长为 时,四边形ADCB为矩形19(5分)如图,已知等腰三角形ABC的底角为30,以BC为直径的O与底边AB交于点D,过
7、D作DEAC,垂足为E证明:DE为O的切线;连接OE,若BC4,求OEC的面积20(8分)我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元A、B两种奖品每件各多少元?现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?21(10分)计算:(2)0+|1|+2cos3022(10分)已知,四边形ABCD中,E是对角线AC上一点,DEEC,以AE为直径的O与边CD相切于点D,点B在O上,连接OB求证:DEOE;若CDAB,求证:BC是
8、O的切线;在(2)的条件下,求证:四边形ABCD是菱形23(12分)在RtABC中,ACB90,以点A为圆心,AC为半径,作A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交A于点F,连接AF、BF、DF(1)求证:BF是A的切线(2)当CAB等于多少度时,四边形ADFE为菱形?请给予证明24(14分)学校实施新课程改革以来,学生的学习能力有了很大提高王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2)请根据统计图解答下列问题:本次调查中,王老
9、师一共调查了 名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】依据相反数的概念及性质即可得【详解】因为a、b互为相反数,所以a+b=1,故选B【点睛】此题主要考查相反数的概念及性质相反数的定义:只有符号不同的两个数互为相反数,1的相反数是12、D【解析】设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可【详解】设这个数是a,把x=1代入得:(-2+1)=1-,1=1-,
10、解得:a=1故选:D【点睛】本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键3、B【解析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:故选B【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程4、A【解析】方程两边同乘2x(x+3),得x+3=2kx,(2k-1)x=3,方程无解
11、,当整式方程无解时,2k-1=0,k=,当分式方程无解时,x=0时,k无解,x=-3时,k=0,k=0或时,方程无解,故选A.5、A【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图详解:该几何体的左视图是:故选A点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力6、D【解析】根据多边形的内角和=(n2)180,列方程可求解.【详解】设所求多边形边数为n,(n2)1801080,解得n8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.7、A【解析】根据图形,
12、结合题目所给的运算法则列出方程组【详解】图2所示的算筹图我们可以表述为:故选A【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组8、C【解析】作点D关于x轴的对称点D,连接CD交x轴于点P,此时PC+PD值最小,如图所示直线y=x+4与x轴、y轴的交点坐标为A(6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(3,1),点D(0,1)再由点D和点D关于x轴对称,可知点D的坐标为(0,1)设直线CD的解析式为y=kx+b,直线CD过点C(3,1),D(0,1),所以,解得:,即可得直线CD的解析式为y=x
13、1令y=x1中y=0,则0=x1,解得:x=,所以点P的坐标为(,0)故答案选C考点:一次函数图象上点的坐标特征;轴对称-最短路线问题9、C【解析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论【详解】解:观察二次函数图象可知:开口向上,a1;对称轴大于1,1,b1;二次函数图象与y轴交点在y轴的正半轴,c1反比例函数中ka1,反比例函数图象在第二、四象限内;一次函数ybxc中,b1,c1,一次函数图象经过第二、三、四象限故选C【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负
14、本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论10、C【解析】先根据平角的定义求出1的度数,再由平行线的性质即可得出结论【详解】解:118010080,ac,180806040故选:C【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补二、填空题(共7小题,每小题3分,满分21分)11、 49 【解析】(1)观察等式可得 然后根据此规律就可解决问题;(2)只需运用以上规律,采用拆项相消法即可解决问题【详解】(1)观察等式,可得以下规律:, (2) 解得:n=49.故答案为:49.【点
15、睛】属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.12、A【解析】根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断OAB为等腰直角三角形,所以AOB=45,再利用PQOA可得到OPQ=45,然后轴对称的性质得PB=PB,BBPQ,所以BPQ=BPQ=45,于是得到BPy轴,则点B的坐标可表示为(-,t),于是利用PB=PB得t-2=|-|=,然后解方程可得到满足条件的t的值【详解】如图,点A坐标为(-2,2),k=-22=-4,反比例函数解析式为y=-,OB=AB=2,OAB为等腰直角三角形
16、,AOB=45,PQOA,OPQ=45,点B和点B关于直线l对称,PB=PB,BBPQ,BPQ=OPQ=45,BPB=90,BPy轴,点B的坐标为(- ,t),PB=PB,t-2=|-|=,整理得t2-2t-4=0,解得t1= ,t2=1- (不符合题意,舍去),t的值为故选A【点睛】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程13、x1【解析】分析:直接利用幂的乘方运算法则计算得出答案详解:(x4)2=x42=x1 故答案为x1点睛:本题主要考查了幂的乘方运算,正确掌握运算法则是解题的关键14、k【解析
17、】分k=1及k1两种情况考虑:当k=1时,通过解一元一次方程可得出原方程有解,即k=1符合题意;等k1时,由1即可得出关于k的一元一次不等式,解之即可得出k的取值范围综上此题得解【详解】当k=1时,原方程为-x+2=1,解得:x=2,k=1符合题意;当k1时,有=-(2k+1)2-4k(k+2)1,解得:k且k1综上:k的取值范围是k故答案为:k【点睛】本题考查了根的判别式以及一元二次方程的定义,分k=1及k1两种情况考虑是解题的关键15、0m【解析】【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答【
18、详解】把点(12,5)代入直线y=kx得,5=12k,k=;由y=x平移m(m0)个单位后得到的直线l所对应的函数关系式为y=x+m(m0),设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=m,A(m,0),B(0,m),即OA=m,OB=m,在RtOAB中,AB=,过点O作ODAB于D,SABO=ODAB=OAOB,OD=mm,m0,解得OD=m,由直线与圆的位置关系可知m 6,解得m,故答案为0m.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较
19、直观明了.16、40【解析】首先证明PBBC,推出C30,可得PC2PA,求出PA即可解决问题【详解】解:在RtPAB中,APB30,PB2AB,由题意BC2AB,PBBC,CCPB,ABPC+CPB60,C30,PC2PA,PAABtan60,PC22040(km),故答案为40【点睛】本题考查解直角三角形的应用方向角问题,解题的关键是证明PBBC,推出C3017、120【解析】首先证明ABG=GBE=AGB=30,可得ABC=60,再利用平行四边形的邻角互补即可解决问题.【详解】由题意得:GBA=GBE,ADBC,AGB=GBE=30,ABC=60,ABCD,C=180-ABC=120,故
20、答案为:120.【点睛】本题考查基本作图、平行四边形的性质等知识,解题的关键是熟练掌握基本知识三、解答题(共7小题,满分69分)18、(1)证明见解析(2)cm,cm【解析】【分析】(1)连接OB,要证明PB是切线,只需证明OBPB即可;(2)利用菱形、矩形的性质,求出圆心角COD即可解决问题.【详解】(1)如图连接OB、BC,OA=OB,OAB=OBA=30,COB=OAB=OBA=60,OB=OC,OBC是等边三角形,BC=OC,PC=OA=OC,BC=CO=CP,PBO=90,OBPB,PB是O的切线;(2)的长为cm时,四边形ADPB是菱形,四边形ADPB是菱形,ADB=ACB=60,
21、COD=2CAD=60,的长=cm;当四边形ADCB是矩形时,易知COD=120,的长=cm,故答案为:cm, cm.【点睛】本题考查了圆的综合题,涉及到切线的判定、矩形的性质、菱形的性质、弧长公式等知识,准确添加辅助线、灵活应用相关知识解决问题是关键.19、 (1)证明见解析;(2)【解析】试题分析:(1)首先连接OD,CD,由以BC为直径的O,可得CDAB,又由等腰三角形ABC的底角为30,可得AD=BD,即可证得ODAC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得BOD,ODE,ADE以及ABC的面积,继而求得答案试题解析:(1)证明:连接OD,CD
22、,BC为O直径,BDC=90,即CDAB,ABC是等腰三角形,AD=BD,OB=OC,OD是ABC的中位线,ODAC,DEAC,ODDE,D点在O上,DE为O的切线;(2)解:A=B=30,BC=4,CD=BC=2,BD=BCcos30=2,AD=BD=2,AB=2BD=4,SABC=ABCD=42=4,DEAC,DE=AD=2=,AE=ADcos30=3,SODE=ODDE=2=,SADE=AEDE=3=,SBOD=SBCD=SABC=4=,SOEC=SABC-SBOD-SODE-SADE=4-=20、(1)A种奖品每件16元,B种奖品每件4元(2)A种奖品最多购买41件【解析】【分析】(1
23、)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100a)件,根据总价=单价购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论【详解】(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:,答:A种奖品每件16元,B种奖品每件4元;(2)设A种奖品购买a件,则B种奖品购买(100a)件,根据题意得:16a+4(100a)900,解得:a,a为整数,a4
24、1,答:A种奖品最多购买41件【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.21、【解析】(1)原式利用二次根式的性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值进行化简即可得到结果【详解】原式,【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键22、(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】(1)先判断出2+390,再判断出12即可得出结论;(2)根据等腰三角形的性质得到3CODDEO60,根据平行线的性质得到41,根据全等三角形的性质得到
25、CBOCDO90,于是得到结论;(3)先判断出ABOCDE得出ABCD,即可判断出四边形ABCD是平行四边形,最后判断出CDAD即可【详解】(1)如图,连接OD,CD是O的切线,ODCD,2+31+COD90,DEEC,12,3COD,DEOE;(2)ODOE,ODDEOE,3CODDEO60,2130,ABCD,41,124OBA30,BOCDOC60,在CDO与CBO中,CDOCBO(SAS),CBOCDO90,OBBC,BC是O的切线;(3)OAOBOE,OEDEEC,OAOBDEEC,ABCD,41,124OBA30,ABOCDE(AAS),ABCD,四边形ABCD是平行四边形,DAE
26、DOE30,1DAE,CDAD,ABCD是菱形【点睛】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出ABOCDE是解本题的关键23、(1)证明见解析;(2)当CAB=60时,四边形ADFE为菱形;证明见解析;【解析】分析(1)首先利用平行线的性质得到FAB=CAB,然后利用SAS证得两三角形全等,得出对应角相等即可;(2)当CAB=60时,四边形ADFE为菱形,根据CAB=60,得到FAB=CAB=CAB=60,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形详解:(1)证明:EFABFAB=EFA,C
27、AB=EAE=AFEFA =EFAB=CABAC=AF,AB=ABABCABF AFB=ACB=90, BF是A的切线. (2)当CAB=60时,四边形ADFE为菱形.理由:EFABE=CAB=60AE=AFAEF是等边三角形AE=EF,AE=ADEF=AD四边形ADFE是平行四边形AE=EF平行四边形ADFE为菱形.点睛:本题考查了菱形的判定、全等三角形的判定与性质及圆周角定理的知识,解题的关键是了解菱形的判定方法及全等三角形的判定方法,难度不大24、(1)20;(2)作图见试题解析;(3)【解析】(1)由A类的学生数以及所占的百分比即可求得答案;(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案【详解】(1)根据题意得:王老师一共调查学生:(2+1)15%=20(名);故答案为20;(2)C类女生:2025%2=3(名);D类男生:20(115%50%25%)1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:
限制150内