湖南省怀化市2023年中考数学五模试卷含解析.doc
《湖南省怀化市2023年中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省怀化市2023年中考数学五模试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A平均数 B中位数 C众数 D方差2如图,已知直线AB、CD被直线AC所截,ABCD,E是平面内任意一点(点E不在直线AB
2、、CD、AC上),设BAE=,DCE=下列各式:+,360,AEC的度数可能是()ABCD3如果,那么的值为( )A1B2CD4(3分)学校要组织足球比赛赛制为单循环形式(每两队之间赛一场)计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛根据题意,下面所列方程正确的是( )A B C D5甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地已知A,C两地间的距离为110千米,B,C两地间的距离为100千米甲骑自行车的平均速度比乙快2千米/时结果两人同时到达C地求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时由题意列出方程其中正确的是()ABCD6如图,将函数y
3、(x2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A、B若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()Ay(x2)2-2By(x2)2+7Cy(x2)2-5Dy(x2)2+47下列运算正确的是()Aa3a=2aB(ab2)0=ab2C=D=98下列计算正确的是( )A B C D9如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()ABCD10已知3a2b=1,则代数式56a+4b的值是()A4 B3 C1 D3二、填空题(共7小题,每小题3分,满分21分)11如图,在菱形ABCD中,AB=,B=120
4、,点E是AD边上的一个动点(不与A,D重合),EFAB交BC于点F,点G在CD上,DG=DE若EFG是等腰三角形,则DE的长为_12如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60方向航行,乙船沿北偏西30方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船的航程为_海里(结果保留根号).13使得分式值为零的x的值是_;14如图,点A、B、C在圆O上,弦AC与半径OB互相平分,那么AOC度数为_度15计算的结果为_16在平面直角坐标系中,点P到轴的距离为1,到轴的距离为2.写出一个符合条件的点P的坐标_.17如图,已知点A(4,0),O为坐标原点,P是线段
5、OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D当ODA是等边三角形时,这两个二次函数的最大值之和等于_三、解答题(共7小题,满分69分)18(10分)如图,在平面直角坐标系中,一次函数yx+2的图象交x轴于点P,二次函数yx2+x+m的图象与x轴的交点为(x1,0)、(x2,0),且+17(1)求二次函数的解析式和该二次函数图象的顶点的坐标(2)若二次函数yx2+x+m的图象与一次函数yx+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得MAB是以ABM为直角的
6、直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由19(5分)如图,已知O的直径AB=10,弦AC=6,BAC的平分线交O于点D,过点D作DEAC交AC的延长线于点E求证:DE是O的切线求DE的长20(8分)一艘观光游船从港口A以北偏东60的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间(温馨提示:sin530.8,cos530.6)21(10分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为米,斜坡B
7、C的坡度i=1:小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45,旗杆底部B的仰角为20(1)求坡角BCD;(2)求旗杆AB的高度(参考数值:sin200.34,cos200.94,tan200.36)22(10分)如图,在RtABC中,C=90,以AC为直径作O,交AB于D,过点O作OEAB,交BC于E(1)求证:ED为O的切线;(2)若O的半径为3,ED=4,EO的延长线交O于F,连DF、AF,求ADF的面积23(12分)解不等式组:并把解集在数轴上表示出来.24(14分)某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小
8、时后,其他学生乘公共汽车出发,结果他们同时到达己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】解:根据中位数的意义,故只要知道中位数就可以了故选B2、D【解析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由ABCD,可得AOC=DCE1=AOC=BAE1+AE1C,AE1C=-过点E2作AB的平行线,由ABCD,可得1=BAE2=,2=DCE2=AE2C=+由ABCD,可得BOE3=DCE3=BA
9、E3=BOE3+AE3C,AE3C=-由ABCD,可得BAE4+AE4C+DCE4=360,AE4C=360-AEC的度数可能是+,-,360,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.3、D【解析】先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案【详解】 故选:D【点睛】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键4、B【解析】试题分析:设有x个队,每个队都要赛(x1)场,但两队之间只有一场比赛,由题意得:,故选B考点:由实际问题抽象出一元二次方程5、A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(
10、x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可解:设乙骑自行车的平均速度为x千米/时,由题意得:=,故选A6、D【解析】函数的图象过点A(1,m),B(4,n),m=,n=3,A(1,),B(4,3),过A作ACx轴,交BB的延长线于点C,则C(4,),AC=41=3,曲线段AB扫过的面积为9(图中的阴影部分),ACAA=3AA=9,AA=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,新图象的函数表达式是故选D7、D【解析】直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答
11、案【详解】解:A、a3a=2a,故此选项错误;B、(ab2)0=1,故此选项错误;C、故此选项错误;D、=9,正确故选D【点睛】此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键8、D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确故选D9、A【解析】试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形故选A【考点】简单组合体的三视图10、B【解析】先变形,再整体代入,即可求出答案【详解】
12、3a2b=1,56a+4b=52(3a2b)=521=3,故选:B【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键二、填空题(共7小题,每小题3分,满分21分)11、1或 【解析】由四边形ABCD是菱形,得到BCAD,由于EFAB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EFAB,于是得到EF=AB=,当EFG为等腰三角形时,EF=GE=时,于是得到DE=DG=AD=1,GE=GF时,根据勾股定理得到DE=【详解】解:四边形ABCD是菱形,B=120,D=B=120,A=180-120=60,BCAD,EFAB,四边形ABFE是平行四边形,EFAB,EF=AB=,DE
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖南省 怀化市 2023 年中 数学 试卷 解析
限制150内