甘肃省白银市靖远县重点中学2022-2023学年中考数学押题试卷含解析.doc
《甘肃省白银市靖远县重点中学2022-2023学年中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《甘肃省白银市靖远县重点中学2022-2023学年中考数学押题试卷含解析.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列各类数中,与数轴上的点存在一一对应关系的是()A有理数 B实数 C分数 D整数2已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的
2、抛物线解析式为( )Ay=-x2-4x-1By=-x2-4x-2Cy=-x2+2x-1Dy=-x2+2x-23将二次函数yx2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )Ay(x1)22By(x1)22Cy(x1)22Dy(x1)224下列计算正确的是()Aa6a2=a3B(2)1=2C(3x2)2x3=6x6D(3)0=15如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得
3、到下列推断:该正六边形的边长为1;当t3时,机器人一定位于点O;机器人一定经过点D;机器人一定经过点E;其中正确的有( )ABCD6若在同一直角坐标系中,正比例函数yk1x与反比例函数y的图象无交点,则有()Ak1k20Bk1k20Ck1k20Dk1k207如图,矩形ABCD中,AB=8,BC=1点E在边AB上,点F在边CD上,点G、H在对角线AC上若四边形EGFH是菱形,则AE的长是( )A2B3C5D68下列事件中,属于必然事件的是( )A三角形的外心到三边的距离相等B某射击运动员射击一次,命中靶心C任意画一个三角形,其内角和是 180D抛一枚硬币,落地后正面朝上9已知一次函数yx+2的图
4、象,绕x轴上一点P(m,1)旋转181,所得的图象经过(11),则m的值为()A2B1C1D210抢微信红包成为节日期间人们最喜欢的活动之一对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图根据如图提供的信息,红包金额的众数和中位数分别是()A20,20B30,20C30,30D20,3011下列说法: ;数轴上的点与实数成一一对应关系;2是的平方根;任何实数不是有理数就是无理数;两个无理数的和还是无理数;无理数都是无限小数,其中正确的个数有( )A2个B3个C4个D5个12在,这四个数中,比小的数有( )个ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13甲
5、、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_千米14如图,在ABC中,C=90,AC=BC=,将ABC绕点A顺时针方向旋转60到ABC的位置,连接CB,则CB= _15点A(a,3)与点B(4,b)关于原点对称,则a+b()A1B4C4D116计算:12_17如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物假定蚂蚁在每个岔路口都等可能的随机选择一条
6、向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口)那么,蚂蚁从A出发到达E处的概率是_18不等式12x6的负整数解是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,四边形ABCD内接于O,BAD=90,点E在BC的延长线上,且DEC=BAC(1)求证:DE是O的切线;(2)若ACDE,当AB=8,CE=2时,求AC的长20(6分)如图,菱形ABCD中,已知BAD=120,EGF=60, EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F(1)如图甲,当顶点G运动到与点A重
7、合时,求证:EC+CF=BC;(2)知识探究:如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当2时,求EC的长度21(6分)如图,已知点A,C在EF上,ADBC,DEBF,AECF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AECF除外)22(8分)综合与实践猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点
8、,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为: ;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”小丽:连接AF,图中出现新的等腰三角形,如AFB,小凯:不妨设图中不断变化的角BAF的度数为n,并设法用n表示图中的一些角,可证明结论请你参考同学们的思路,完成证明;(3)创新小
9、组的同学在图1中,发现线段CGDF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,ABC=,其余条件不变,请探究DFG的度数,并直接写出结果(用含的式子表示)23(8分)先化简,再求值:,其中a为不等式组的整数解24(10分)如图,在RtABC中,C90,以BC为直径的O交AB于点D,过点D作O的切线DE交AC于点E(1)求证:AADE;(2)若AB25,DE10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S(用含字母a的式子表示)25(10分)如图,的直角顶点P在第四象限,顶点A、B分别落在反比例函数图象的两支上,且轴于点C,轴于点D,AB分
10、别与x轴,y轴相交于点F和已知点B的坐标为填空:_;证明:;当四边形ABCD的面积和的面积相等时,求点P的坐标26(12分)已知:如图,在ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且AGE=CGN.(1)求证:四边形ENFM为平行四边形;(2)当四边形ENFM为矩形时,求证:BE=BN.27(12分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距 千米,慢车速度为 千米/小时(2)求快车速度是多少?(3)求
11、从两车相遇到快车到达甲地时y与x之间的函数关系式(4)直接写出两车相距300千米时的x值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据实数与数轴上的点存在一一对应关系解答【详解】实数与数轴上的点存在一一对应关系,故选:B【点睛】本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也就是说实数与数轴上的点一一对应.2、D【解析】把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变
12、,即可求得函数解析式【详解】解:y=x14x5=(x+1)11,顶点坐标是(1,1)由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=x的图象上,即顶点的横纵坐标互为相反数左、右平移时,顶点的纵坐标不变,平移后的顶点坐标为(1,1),函数解析式是:y=(x1)11=x1+1x1,即:y=x1+1x1故选D【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变同时考查了二次函数的性质,正比例函数y=x的图象上点的坐标特征3、A【解析】试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案解:将二次函数y=x
13、2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x1)2+2,故选A考点:二次函数图象与几何变换4、D【解析】解:Aa6a2=a4,故A错误;B(2)1=,故B错误;C(3x2)2x3=6x5,故C错;D(3)0=1,故D正确故选D5、C【解析】根据图象起始位置猜想点B或F为起点,则可以判断正确,错误结合图象判断3t4图象的对称性可以判断正确结合图象易得正确【详解】解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1故正确;观察图象t在34之间时,图象具有对称性则可知,机器人在OB或OF上,则当t3时,机器人距离点A距离为1个单位长度,机
14、器人一定位于点O,故正确;所有点中,只有点D到A距离为2个单位,故正确;因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故错误故选:C【点睛】本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势6、D【解析】当k1,k2同号时,正比例函数yk1x与反比例函数y的图象有交点;当k1,k2异号时,正比例函数yk1x与反比例函数y的图象无交点,即可得当k1k20时,正比例函数yk1x与反比例函数y的图象无交点,故选D.7、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EFAC;利用”AAS或ASA”易证FMCEMA,根据全等三角形的
15、性质可得AM=MC;在RtABC中,由勾股定理求得AC=,且tanBAC=;在RtAME中,AM=AC=,tanBAC=可得EM=;在RtAME中,由勾股定理求得AE=2故答案选C考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数8、C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题
16、意;故选C点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件9、C【解析】根据题意得出旋转后的函数解析式为y=-x-1,然后根据解析式求得与x轴的交点坐标,结合点的坐标即可得出结论【详解】一次函数yx+2的图象,绕x轴上一点P(m,1)旋转181,所得的图象经过(11),设旋转后的函数解析式为yx1,在一次函数yx+2中,令y1,则有x+21,解得:x4,即一次函数yx+2与x轴交点为(4,1)一次函数yx1中,令y1,则有x11,解得:x
17、2,即一次函数yx1与x轴交点为(2,1)m1,故选:C【点睛】本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式本题属于基础题,难度不大10、C【解析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数【详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握11、C【解析】根据平方根,数轴,有理数的分类逐一分析即可.【详解】,是错误的;数轴上的点与实数成一一对应关系,故说法正确;4,故-2是
18、的平方根,故说法正确;任何实数不是有理数就是无理数,故说法正确;两个无理数的和还是无理数,如 和 是错误的;无理数都是无限小数,故说法正确;故正确的是共4个;故选C.【点睛】本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如 等,也有这样的数.12、B【解析】比较这些负数的绝对值,绝对值大的反而小.【详解】在4、1、这四个数中,比2小的数是是4和.故选B.【点睛】本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小.二、填空题:(本大题
19、共6个小题,每小题4分,共24分)13、630【解析】分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.详解:设甲车,乙车的速度分别为x千米/时,y千米/时,甲车与乙车相向而行5小时相遇,则5(xy)900,解得xy180,相遇后当甲车到达B地时两车相距720千米,所需时间为7201804小时,则甲车从A地到B需要9小时,故甲车的速度为9009100千米/时,乙车的速度为18010080千米/时,乙车行驶900720180千米所
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 甘肃省 白银市 靖远县 重点中学 2022 2023 学年 中考 数学 押题 试卷 解析
限制150内