福建省厦门市瑞景外国语分校2023年中考数学对点突破模拟试卷含解析.doc
《福建省厦门市瑞景外国语分校2023年中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省厦门市瑞景外国语分校2023年中考数学对点突破模拟试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1当ab0时,yax2与yax+b的图象大致是()ABCD2济南市某天的气温:-58,则当天最高与最低的温差为( )A13B3C-13D-33如图,4张如图1的长为a,宽为b(ab)长方形纸片
2、,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S22S1,则a,b满足()AaBa2bCabDa3b4已知x1,x2是关于x的方程x2+bx3=0的两根,且满足x1+x23x1x2=5,那么b的值为()A4 B4 C3 D35的绝对值是()ABC2D26将一副直角三角尺如图放置,若AOD=20,则BOC的大小为( )A140B160C170D1507下列计算正确的是()A2x2y32x3y4x6y3B(2a2)36a6C(2a+1)(2a1)2a21D35x3y25x2y7xy8一元二次方程的根的情况是( )A有一个实数根B有两个相等的实数根C有两个不相等的实数根D没有实数
3、根9某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )ABCD10单项式2a3b的次数是()A2B3C4D511如图,矩形ABCD中,AB4,BC3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1S2为( )ABCD612将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,某水库大坝的横断面是梯形,坝顶宽米,坝高是20米,背水坡的坡角为30,
4、迎水坡的坡度为12,那么坝底的长度等于_米(结果保留根号)14如图,在平面直角坐标系中,以坐标原点O为位似中心在y轴的左侧将OAB缩小得到OAB,若OAB与OAB的相似比为2:1,则点B(3,2)的对应点B的坐标为_15设ABC的面积为1,如图,将边BC、AC分别2等分,BE1、AD1相交于点O,AOB的面积记为S1;如图将边BC、AC分别3等分,BE1、AD1相交于点O,AOB的面积记为S2;,依此类推,则Sn可表示为_(用含n的代数式表示,其中n为正整数)16分式方程=1的解为_17若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是_18关于的方程有两个不相等的实数根,那么的取值
5、范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)直角三角形ABC中,D是斜边BC上一点,且,过点C作,交AD的延长线于点E,交AB延长线于点F求证:;若,过点B作于点G,连接依题意补全图形,并求四边形ABGD的面积20(6分)在ABC中,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F如图,连接AD,若,求B的大小;如图,若点F为的中点,的半径为2,求AB的长 21(6分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20,用7200元购进的乙种品牌空调数量比用3000
6、元购进的甲种品牌空调数量多2台 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元台,乙种品牌空调的售价为3500元台请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润22(8分)已知:如图,在四边形ABCD中,ABCD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GEGD求证:ACF=ABD;连接EF,求证:EFCG=EGCB23(8分)如图,在平面直角坐标xOy中,正比例函数ykx的图象与反比例函数y的图象都经过点A(2,2)(1)分别求这两个函数
7、的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及ABC的面积24(10分) (1)解方程: +4(2)解不等式组并把解集表示在数轴上:.25(10分)已知:如图,在ABC中,AB=BC,ABC=90,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形26(12分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且
8、顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上(1)求抛物线的解析式;(2)当PO+PC的值最小时,求点P的坐标;(3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由27(12分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下()收集、整理数据请将表格补充完整: ()描述数据为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;
9、()分析数据、做出推测预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】ab0,a、b同号当a0,b0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a0,b0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求故选B2、A【解析】由题意可知,当天最高温与最低温的温差为8-(-5)=13,故选A.3、B【解析】从图形可知空白部分的面积为S2是中间边长为(ab)的正方形面积与上下两个直角边为(a+b)和b
10、的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S22S1,便可得解【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,S22S1,a2+2b22(2abb2),a24ab+4b20,即(a2b)20,a2b,故选B【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解4、A【解析】根据一元二次方程根与系数的关系和整体代入思想即可得解.【详解】x1,x2是关于x的方程x2+bx3=0的两根,x1+x2=b
11、,x1x2=3,x1+x23x1x2=b+9=5,解得b=4.故选A.【点睛】本题主要考查一元二次方程的根与系数的关系(韦达定理),韦达定理:若一元二次方程ax2+bx+c=0(a0)有两个实数根x1,x2,那么x1+x2=,x1x2=.5、B【解析】根据求绝对值的法则,直接计算即可解答【详解】,故选:B【点睛】本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键6、B【解析】试题分析:根据AOD=20可得:AOC=70,根据题意可得:BOC=AOB+AOC=90+70=160.考点:角度的计算7、D【解析】A根据同底数幂乘法法则判断;B根据积的乘方法则判断即可;C根据平方
12、差公式计算并判断;D根据同底数幂除法法则判断【详解】A.-2x-2y32x3y=-4xy4,故本选项错误;B.(2a2)3=8a6,故本项错误;C.(2a+1)(2a1)=4a21,故本项错误;D.35x3y25x2y=7xy,故本选项正确.故答案选D.【点睛】本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.8、D【解析】试题分析:=22-44=-120,故没有实数根;故选D考点:根的判别式9、A【解析】作出树状图即可解题.【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 福建省 厦门市 外国语 分校 2023 年中 数学 突破 模拟 试卷 解析
限制150内