甘肃省平凉市静宁县重点名校2023年中考押题数学预测卷含解析.doc
《甘肃省平凉市静宁县重点名校2023年中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《甘肃省平凉市静宁县重点名校2023年中考押题数学预测卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE
2、,BF交于点P,过点P分别作PMCD,PNBC,则线段MN的长度的最小值为( )ABCD12直线y=3x+1不经过的象限是()A第一象限B第二象限C第三象限D第四象限3如图,若ab,1=60,则2的度数为()A40B60C120D1504计算的结果是( )ABC1D25如图,O是ABC的外接圆,B=60,O的半径为4,则AC的长等于()A4B6C2D86如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分BED,则BE的长为()ABCD47在平面直角坐标系中,点P(m3,2m)不可能在()A第一象限 B第二象限 C第三象限 D第四象限8如图,ABCD对角线AC与BD交于点O,
3、且AD3,AB5,在AB延长线上取一点E,使BEAB,连接OE交BC于F,则BF的长为()ABCD19如图,二次函数y=ax2+bx+c(a0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中1x10,1x22,下列结论:4a+2b+c0,2a+b0,b2+8a4ac,a1,其中结论正确的有()A1个B2个C3个D4个10如图,已知ABCD,1=115,2=65,则C等于()A40B45C50D60二、填空题(共7小题,每小题3分,满分21分)11随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_12如图,在平面直角坐标系
4、中,正方形ABOC和正方形DOFE的顶点B,F在x轴上,顶点C,D在y轴上,且SADC=4,反比例函数y=(x0)的图像经过点E, 则k=_ 。13如图,把一个面积为1的正方形分成两个面积为的长方形,再把其中一个面积为的长方形分成两个面积为的正方形,再把其中一个面积为的正方形分成两个面积为的长方形,如此进行下去,试用图形揭示的规律计算:_14已知点A(2,4)与点B(b1,2a)关于原点对称,则ab_15点(a1,y1)、(a1,y2)在反比例函数y(k0)的图象上,若y1y2,则a的范围是_16如图所示,四边形ABCD中,对角线AC、BD交于点E,且,若,则CE的长为_17如图,折叠矩形AB
5、CD的一边AD,使点D落在BC边的点F处,已知折痕AE5cm, 且tanEFC,那么矩形ABCD的周长_cm三、解答题(共7小题,满分69分)18(10分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同)把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;若任意抽出一张不放回,然后再从余下的抽出一张请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率19(5分)太阳能光伏发电因其清洁、安全、便利、高效等特点,
6、已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)20(8分)(1)计算:;(2)已知ab,求(a2)2+b(b2a)+4(a1)的值21(10分)如图,一次函数y=2x4的图象与反比例函数y=的图象交于A、B两点,且点A的横
7、坐标为1(1)求反比例函数的解析式;(2)点P是x轴上一动点,ABP的面积为8,求P点坐标22(10分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3)(1)求抛物线L的顶点坐标和A点坐标(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m0)是抛物线L2上的一点,是否存在点P,使得PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由23(12分)某商场经营某种品牌的童装,购进时的单价是60元根据市场调查,在一
8、段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?24(14分)如图,已知A是O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB求证:AB是O的切线;若ACD=45,OC=2,求弦CD的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分析:由于点P在运动中保持APD=90
9、,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可详解: 由于点P在运动中保持APD=90, 点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在RtQDC中,QC=, CP=QCQP=,故选B点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型解决这个问题的关键是根据圆的知识得出点P的运动轨迹2、D【解析】利用两点法可画出函数图象,则可求得答案【详解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,直线与x轴交于点(-,0),与y轴交于点(0,
10、1),其函数图象如图所示,函数图象不过第四象限,故选:D【点睛】本题主要考查一次函数的性质,正确画出函数图象是解题的关键3、C【解析】如图:1=60,3=1=60,又ab,2+3=180,2=120,故选C.点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.4、A【解析】根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.【详解】.故选A.【点睛】本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.5、A【解析】解:连接OA,OC,过点O作ODAC于点D
11、,AOC=2B,且AOD=COD=AOC,COD=B=60;在RtCOD中,OC=4,COD=60,CD=OC=2,AC=2CD=4故选A【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理6、D【解析】首先根据矩形的性质,可知AB=CD=3,AD=BC=4,D=90,ADBC,然后根据AE平分BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.【详解】四边形ABCD是矩形,AB=CD=3,AD=BC=4,D=90,ADBC,DAE=BEA,AE是DEB的平分线,BEA=AED,DAE=AED,DE=AD=4,再RtDEC中,EC=,BE=BC-EC=4-.故答案选D.
12、【点睛】本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.7、A【解析】分点P的横坐标是正数和负数两种情况讨论求解【详解】m-30,即m3时,2-m0,所以,点P(m-3,2-m)在第四象限;m-30,即m3时,2-m有可能大于0,也有可能小于0,点P(m-3,2-m)可以在第二或三象限,综上所述,点P不可能在第一象限故选A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)8、A【解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 甘肃省 平凉市 静宁县 重点 名校 2023 年中 押题 数学 预测 解析
限制150内