福建省泉州市鲤城区北片区重点中学2022-2023学年中考二模数学试题含解析.doc
《福建省泉州市鲤城区北片区重点中学2022-2023学年中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《福建省泉州市鲤城区北片区重点中学2022-2023学年中考二模数学试题含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1-2的绝对值是()A2B-2C2D2下列运算正确的是()A5a+2b=5(a+b)Ba+a2=a3C2a33a2=6a5D(a3)2=a53有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A方差B中位数C众数D平均数4下列计算正确的是()Aa+a=2aBb3b3=2b3Ca3a
2、=a3D(a5)2=a75函数y=中自变量x的取值范围是Ax0Bx4Cx4Dx46如图,在ABC中,AED=B,DE=6,AB=10,AE=8,则BC的长度为( )ABC3D7如图,已知菱形ABCD的对角线ACBD的长分别为6cm、8cm,AEBC于点E,则AE的长是()ABCD8人的头发直径约为0.00007m,这个数据用科学记数法表示()A0.7104 B7105 C0.7104 D71059这个数是( )A整数B分数C有理数D无理数10天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价
3、每瓶x元,则可列出方程为( )A-=20B-=20C-=20D二、填空题(本大题共6个小题,每小题3分,共18分)11如图,A、B是反比例函数y(k0)图象上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若SAOC1则k_12已知点(1,m)、(2,n )在二次函数yax22ax1的图象上,如果mn,那么a_0(用“”或“”连接)13化简二次根式的正确结果是_14如图,若双曲线()与边长为3的等边AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为_15在RtABC中,ACB=90,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,
4、连接BD,点M为BD中点,线段CM长度的最大值为_16一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_三、解答题(共8题,共72分)17(8分)观察与思考:阅读下列材料,并解决后面的问题在锐角ABC中,A、B、C的对边分别是a、b、c,过A作ADBC于D(如图(1)),则sinB=,sinC=,即ADcsinB,ADbsinC,于是csinBbsinC,即,同理有:,所以即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素根据上述材料,完成下列各题(1)如图(2),ABC中,B45,C75,BC6
5、0,则A ;AC ;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30的方向上,随后以40海里/时的速度按北偏东30的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75的方向上,求此时渔政204船距钓鱼岛A的距离AB(结果精确到0.01,2.449)18(8分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为 ;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆
6、心角为 度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?19(8分)先化简,再求值:,再从的范围内选取一个你最喜欢的值代入,求值20(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率(请结合树状图或
7、列表解答)21(8分)如图,四边形ABCD中,C90,ADDB,点E为AB的中点,DEBC.(1)求证:BD平分ABC;(2)连接EC,若A30,DC,求EC的长.22(10分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点(1)求抛物线的解析式,并直接写出点D的坐标;(2)当AMN的周长最小时,求t的值;(3)如图,过点M作MEx轴,交抛物线y=ax2+bx于点E,连接EM,AE,当AME与DOC相似时请直接写出所有符合条件的点M坐标23(12分)我们知道,平面
8、内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角(0180且90),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,45,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA2,OCl点A、B、C在此斜坐标系内的坐标分别为A ,B ,C 设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的
9、关系为 设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为 (2)若120,O为坐标原点如图3,圆M与y轴相切原点O,被x轴截得的弦长OA4 ,求圆M的半径及圆心M的斜坐标如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是 24如图,矩形ABCD的对角线AC、BD交于点O,且DEAC,CEBD(1)求证:四边形OCED是菱形;(2)若BAC=30,AC=4,求菱形OCED的面积参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据绝对值的性质进行解答即可【详解】解:1的绝对值是:1故选:A【点睛】此题考查绝对值
10、,难度不大2、C【解析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a33a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误故选C【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键3、A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可故选A.考点:1、计算器
11、-平均数,2、中位数,3、众数,4、方差4、A【解析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解【详解】A.a+a=2a,故本选项正确;B.,故本选项错误;C. ,故本选项错误;D.,故本选项错误.故选:A.【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.5、B【解析】根据二次根式的性质,被开方数大于等于0,列不等式求解【详解】根据题意得:x10,解得x1,则自变量x的取值范围是x1故选B【点睛】本题主要考查函数自变量的取值范围的知
12、识点,注意:二次根式的被开方数是非负数6、A【解析】AED=B,A=AADEACB,DE=6,AB=10,AE=8,解得BC.故选A.7、D【解析】根据菱形的性质得出BO、CO的长,在RTBOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BCAE,可得出AE的长度【详解】四边形ABCD是菱形,CO=AC=3,BO=BD=,AOBO,又,BCAE=24,即故选D点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分8、B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是
13、负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.00007m,这个数据用科学记数法表示7101故选:B【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定9、D【解析】由于圆周率是一个无限不循环的小数,由此即可求解【详解】解:实数是一个无限不循环的小数所以是无理数故选D【点睛】本题主要考查无理数的概念,是常见的一种无理数的形式,比较简单10、C【解析】关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1【详解】原价买可买瓶,经过还价,可买瓶方程可
14、表示为:=1故选C【点睛】考查了由实际问题抽象出分式方程列方程解应用题的关键步骤在于找相等关系本题要注意讨价前后商品的单价的变化二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】解:分别过点A、B作x轴的垂线,垂足分别为D、E则ADBE,AD=2BE=,B、E分别是AC、DC的中点ADCBEC,BE:AD=1:2,EC:CD=1:2,EC=DE=a,OC=3a,又A(a, ),B(2a, ),SAOC=ADCO=3a =1,解得:k=212、;【解析】=a(x-1)2-a-1,抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m)、(2,n)在二次函数的图像上,|11|21
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 福建省 泉州市 城区 北片区 重点中学 2022 2023 学年 中考 数学试题 解析
限制150内