《辽宁省丹东市名校2022-2023学年中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省丹东市名校2022-2023学年中考数学仿真试卷含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,ABC是等腰直角三角形,A=90,BC=4,点P是ABC边上一动点,沿BAC的路径移动,过点P作PDBC于点D,设BD=x,BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A B C D2已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角
2、形ABC的两条边长,则三角形ABC的周长为()A10B14C10或14D8或103下列计算正确的是( )Ax2+x2=x4 Bx8x2=x4 Cx2x3=x6 D(-x)2-x2=04九章算术中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是类似地,图2所示的算筹图我们可以表述为()ABCD5如图,点ABC在O上,OABC,OAC=19,则AOB的大小为()A19B29C38D526已知:二次函数y=ax2+bx+c(a1)的图象如图所示,下列结论中
3、:abc1;b+2a=1;a-b1其中正确的项有( )A2个B3个C4个D5个7长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A米 B米C米 D米8如图,在ABC中,AC=BC,点D在BC的延长线上,AEBD,点ED在AC同侧,若CAE=118,则B的大小为()A31B32C59D629某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为ABx(x+1)=1980C2x(x+1)=1980Dx(x-1)=198010如图,先锋村准备在坡角为的山坡上栽
4、树,要求相邻两树之间的水平距离为米,那么这两树在坡面上的距离为( )ABC5cosD二、填空题(共7小题,每小题3分,满分21分)11廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是_米精确到1米12如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_ 13如图所示的网格是正方形网格,点P到射线OA的距离为m,点P到射线OB的距离为n,
5、则m _ n(填“”,“=”或“”)14为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_15边长为6的正六边形外接圆半径是_16如图,P是O的直径AB延长线上一点,PC切O于点C,PC=6,BC:AC=1:2,则AB的长为_17孙子算经是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长
6、一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈10尺,1尺10寸),则竹竿的长为_三、解答题(共7小题,满分69分)18(10分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50,观测旗杆底部B的仰角为45,求旗杆AB的高度(参考数据:sin500.77,cos500.64,tan501.19)19(5分)在平面直角坐标系xOy中,二次函数yax2+bx+c(a0)的图象经过A(0,4),B(2,0),C(-2,0)三点(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点
7、B求平移后图象顶点E的坐标;直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积20(8分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?21(10分)计算:_22(10分)已知:如图,在菱形中,点,分别为,的中点,连接,求证:;当与满足什么关系时,四边形是正方形?请说明理由23(12分)(1)计算:(1)0|2|+;(2)如图,在等边三角形ABC中,点D,E分别是边BC,AC的中点,过点E作EFDE,交BC的延长线于点F,
8、求F的度数24(14分)我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛两个队各选出的5名选手的决赛成绩如图所示根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】解:过A点作AHBC于H,ABC是等腰直角三角形,B=C=45,BH=CH=AH=BC=2,当0x2时,如图1,B=45,PD=BD=x,
9、y=xx=;当2x4时,如图2,C=45,PD=CD=4x,y=(4x)x=,故选B2、B【解析】试题分析: 2是关于x的方程x22mx+3m=0的一个根,224m+3m=0,m=4,x28x+12=0,解得x1=2,x2=1当1是腰时,2是底边,此时周长=1+1+2=2; 当1是底边时,2是腰,2+21,不能构成三角形 所以它的周长是2 考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质3、D【解析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.
10、合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方4、A【解析】根据图形,结合题目所给的运算法则列出方程组【详解】图2所示的算筹图我们可以表述为:故选A【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组5、C【解析】由AOBC,得到ACB=OAC=19,根据圆周角定理得到AOB=2ACB=38.【详解】AOBC,ACB=OAC,而OAC=19,ACB=19,AOB=2ACB=38故选:C【点睛】本题考查了圆周角定理与平行线的性质解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解
11、此题的关键.6、B【解析】根据二次函数的图象与性质判断即可【详解】由抛物线开口向上知: a1; 抛物线与y轴的负半轴相交知c1; 对称轴在y轴的右侧知:b1;所以:abc【解析】由图像可知在射线上有一个特殊点,点到射线的距离,点到射线的距离,于是可知 ,利用锐角三角函数 ,即可判断出【详解】由题意可知:找到特殊点,如图所示:设点到射线的距离 ,点到射线的距离 由图可知, , , 【点睛】本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.14、【解析】分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论详解:平均数是12,这组数据
12、的和=127=84,被墨汁覆盖三天的数的和=84412=36,这组数据唯一众数是13,被墨汁覆盖的三个数为:10,13,13, 故答案为点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.15、6【解析】根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解【详解】解:正6边形的中心角为360660,那么外接圆的半径和正六边形的边长将组成一个等边三角形,边长为6的正六边形外接圆半径是6,故答案为:6.【点睛】本题考查了正多边形和圆,得出正六边形的外接圆半径和正六边形的边长将组成一个等边三角形是解题的关键16、1【
13、解析】PC切O于点C,则PCB=A,P=P,PCBPAC,,BP=PC=3,PC2=PBPA,即36=3PA,PA=12AB=12-3=1故答案是:1.17、四丈五尺【解析】根据同一时刻物高与影长成正比可得出结论【详解】解:设竹竿的长度为x尺,竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,解得x=45(尺)故答案为:四丈五尺【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键三、解答题(共7小题,满分69分)18、7.6 m【解析】利用CD及正切函数的定义求得BC,AC长,把这两条线段相减即为AB长【详解】解:由题意,BDC45,A
14、DC50,ACD90,CD40 m在RtBDC中,tanBDCBCCD40 m在RtADC中,tanADCAB7.6(m)答:旗杆AB的高度约为7.6 m【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键19、(1)yx2+4;(2)E(5,9);1.【解析】(1)待定系数法即可解题,(2)求出直线DA的解析式,根据顶点E在直线DA上,设出E的坐标,带入即可求解;AB扫过的面积是平行四边形ABGE,根据S四边形ABGES矩形IOKHSAOBSAEISEHGSGBK,求出点B(2,0),G(7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.【详解】解:(1
15、)A(0,4),B(2,0),C(2,0)二次函数的图象的顶点为A(0,4),设二次函数表达式为yax2+4,将B(2,0)代入,得4a+40,解得,a1,二次函数表达式yx2+4;(2)设直线DA:ykx+b(k0),将A(0,4),D(4,0)代入,得 ,解得, ,直线DA:yx+4,由题意可知,平移后的抛物线的顶点E在直线DA上,设顶点E(m,m+4),平移后的抛物线表达式为y(xm)2+m+4,又平移后的抛物线过点B(2,0),将其代入得,(2m)2+m+40,解得,m15,m20(不合题意,舍去),顶点E(5,9),如图,连接AB,过点B作BLAD交平移后的抛物线于点G,连结EG,四
16、边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GKx轴于点K,过点E作EIy轴于点I,直线EI,GK交于点H由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点GB(2,0),点G(7,5),GK5,OB2,OK7,BKOKOB725,A(0,4),E(5,9),AI945,EI5,EH752,HG954,S四边形ABGES矩形IOKHSAOBSAEISEHGSGBK7924552455638251答:图象A,B两点间的部分扫过的面积为1【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间
17、的等量关系是解题关键.20、1台大收割机和1台小收割机每小时各收割小麦0.4hm2和0.2hm2.【解析】此题可设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,根据题中的等量关系列出二元一次方程组解答即可【详解】设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷根据题意可得解得答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.【点睛】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系21、1【解析】首先计算负整数指数幂和开平方,再计算减法即可【详解】解:原式931【点睛】此题主要考查了实数运算,关键是掌握负整数指数幂:为正整数)22、见解
18、析【解析】(1)由菱形的性质得出BD,ABBCDCAD,由已知和三角形中位线定理证出AEBEDFAF,OFDC,OEBC,OEBC,由(SAS)证明BCEDCF即可;(2)由(1)得:AEOEOFAF,证出四边形AEOF是菱形,再证出AEO90,四边形AEOF是正方形【详解】(1)证明:四边形ABCD是菱形,BD,ABBCDCAD,点E,O,F分别为AB,AC,AD的中点,AEBEDFAF,OFDC,OEBC,OEBC,在BCE和DCF中,,BCEDCF(SAS);(2)当ABBC时,四边形AEOF是正方形,理由如下:由(1)得:AEOEOFAF,四边形AEOF是菱形,ABBC,OEBC,OE
19、AB,AEO90,四边形AEOF是正方形.【点睛】本题考查了全等三角形、菱形、正方形的性质,解题的关键是熟练的掌握菱形、正方形、全等三角形的性质.23、(1)1+3;(2)30【解析】(1) 根据零指数幂、 绝对值、 二次根式的性质求出每一部分的值, 代入求出即可;(2)根据平行线的性质可得EDC=B=,根据三角形内角和定理即可求解;【详解】解:(1)原式=12+3=1+3;(2)ABC是等边三角形,B=60,点D,E分别是边BC,AC的中点,DEAB,EDC=B=60,EFDE,DEF=90,F=90EDC=30【点睛】(1) 主要考查零指数幂、 绝对值、 二次根式的性质;(2)考查平行线的性质和三角形内角和定理.24、(1)平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩好些两个队的平均数都相同,初中部的中位数高,在平均数相同的情况下中位数高的初中部成绩好些(3),因此,初中代表队选手成绩较为稳定(1)根据成绩表加以计算可补全统计表根据平均数、众数、中位数的统计意义回答(2)根据平均数和中位数的统计意义分析得出即可(3)分别求出初中、高中部的方差比较即可
限制150内