豫晋冀2022-2023学年高三第二次诊断性检测数学试卷含解析.doc
《豫晋冀2022-2023学年高三第二次诊断性检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《豫晋冀2022-2023学年高三第二次诊断性检测数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若函数恰有3个零点,则实数的取值范围是( )ABCD2已知是过抛物线焦点的弦,是原点,则( )A2B4C3D33已知a0,b0,a+b =1,若 =,则的最小值是( )A3B4C5D64设为
2、坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )ABCD15某三棱锥的三视图如图所示,则该三棱锥的体积为( )AB4CD56不等式组表示的平面区域为,则( )A,B,C,D,7已知复数满足:,则的共轭复数为( )ABCD8双曲线的渐近线方程是( )ABCD9已知不同直线、与不同平面、,且,则下列说法中正确的是( )A若,则B若,则C若,则D若,则10已知为定义在上的偶函数,当时,则( )ABCD11将函数向左平移个单位,得到的图象,则满足( )A图象关于点对称,在区间上为增函数B函数最大值为2,图象关于点对称C图象关于直线对称,在上的最小值为1D最小正周期
3、为,在有两个根12已知集合为自然数集,则下列表示不正确的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系中,已知圆及点,设点是圆上的动点,在中,若的角平分线与相交于点,则的取值范围是_.14已知双曲线-=1(a0,b0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点为P,若|FP|=5,则点F到双曲线的渐近线的距离为_.15在回归分析的问题中,我们可以通过对数变换把非线性回归方程,()转化为线性回归方程,即两边取对数,令,得到.受其启发,可求得函数()的值域是_.16已知向量,且,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。1
4、7(12分)已知抛物线:的焦点为,过上一点()作两条倾斜角互补的直线分别与交于,两点,(1)证明:直线的斜率是1;(2)若,成等比数列,求直线的方程.18(12分)已知函数的最大值为2.()求函数在上的单调递减区间;()中,角所对的边分别是,且,求的面积19(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知:,:,:.(1)求与的极坐标方程(2)若与交于点A,与交于点B,求的最大值.20(12分)如图,在矩形中,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.(1)证明:平面;(2)求二面角的余弦值.21(12分)已知函数(1)当时,证明,
5、在恒成立;(2)若在处取得极大值,求的取值范围.22(10分)如图所示,四棱锥PABCD中,PC底面ABCD,PCCD2,E为AB的中点,底面四边形ABCD满足ADCDCB90,AD1,BC1()求证:平面PDE平面PAC;()求直线PC与平面PDE所成角的正弦值;()求二面角DPEB的余弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求导函数,求出函数的极值,利用函数恰有三个零点,即可求实数的取值范围.【详解】函数的导数为,令,则或,上单调递减,上单调递增,所以0或是函数y的极值点,函数的极值为:,函数恰有三个零
6、点,则实数的取值范围是:.故选B.【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.2、D【解析】设,设:,联立方程得到,计算得到答案.【详解】设,故.易知直线斜率不为,设:,联立方程,得到,故,故.故选:.【点睛】本题考查了抛物线中的向量的数量积,设直线为可以简化运算,是解题的关键 .3、C【解析】根据题意,将a、b代入,利用基本不等式求出最小值即可.【详解】a0,b0,a+b=1,当且仅当时取“”号答案:C【点睛】本题考查基本不等式的应用,“1”的应用,利用基本不
7、等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.4、C【解析】试题分析:设,由题意,显然时不符合题意,故,则,可得:,当且仅当时取等号,故选C考点:1抛物线的简单几何性质;2均值不等式【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题解题时一定要注意分析条件,根据条件,利用向量的运算可知,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题5、B【解析】还原几何体的直
8、观图,可将此三棱锥放入长方体中, 利用体积分割求解即可.【详解】如图,三棱锥的直观图为,体积.故选:B.【点睛】本题主要考查了锥体的体积的求解,利用的体积分割的方法,考查了空间想象力及计算能力,属于中档题.6、D【解析】根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中 ,设,则,的几何意义为直线在轴上的截距的2倍,由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,
9、最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.7、B【解析】转化,为,利用复数的除法化简,即得解【详解】复数满足:所以 故选:B【点睛】本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题.8、C【解析】根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用9、C【解析】根据空间中平行关系、垂直关系的相关判定和性质可依次判
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 豫晋冀 2022 2023 学年 第二次 诊断 检测 数学试卷 解析
限制150内