辽宁省抚顺市望花区达标名校2022-2023学年十校联考最后数学试题含解析.doc
《辽宁省抚顺市望花区达标名校2022-2023学年十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省抚顺市望花区达标名校2022-2023学年十校联考最后数学试题含解析.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对
2、面是“功”,则它的平面展开图可能是( )ABCD2如图,将ABC沿BC边上的中线AD平移到ABC的位置,已知ABC的面积为9,阴影部分三角形的面积为1若AA=1,则AD等于()A2B3CD3如图,两根竹竿AB和AD斜靠在墙CE上,量得ABC=,ADC=,则竹竿AB与AD的长度之比为ABCD4如图,ABC的面积为12,AC3,现将ABC沿AB所在直线翻折,使点C落在直线AD上的C处,P为直线AD上的一点,则线段BP的长可能是()A3B5C6D105由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A3块B4块C6块D9块6根据总书记在“一带一路”国际合作高峰论坛开幕
3、式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为( )A0.61010B0.61011C61010D610117将抛物线向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )ABCD8在下列交通标志中,是中心对称图形的是()ABCD9如图,函数y=2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,ACAB,且AC=AB,则点C的坐标为()A(2,1)B(1,2)C(1,3)D(3,1)10将一根圆柱形的空心钢管任意放
4、置,它的主视图不可能是()ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,点A的坐标是(2,0),ABO是等边三角形,点B在第一象限,若反比例函数的图象经过点B,则k的值是_12如图,点P(3a,a)是反比例函(k0)与O的一个交点,图中阴影部分的面积为10,则反比例函数的表达式为_13如图,AB为0的弦,AB=6,点C是0上的一个动点,且ACB=45,若点M、N分别是AB、BC的中点,则MN长的最大值是_ 14如图,半圆O的直径AB=2,弦CDAB,COD=90,则图中阴影部分的面积为_15已知,在RtABC中,C=90,AC=9,BC=12,点 D、E 分别在边AC、BC上
5、,且CD:CE=31将CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是ABC的平分线,此时线段CD的长是_.16在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n),已知:=(x1,y1),=(x2,y2),如果x1x2+y1y2=0,那么与互相垂直,下列四组向量:=(2,1),=(1,2);=(cos30,tan45),=(1,sin60);=(,2),=(+,);=(0,2),=(2,1)其中互相垂直的是_(填上所有正确答案的符号)17已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的
6、路程s与x(小时)的函数图象如图所示(1)乙比甲晚出发_小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是_三、解答题(共7小题,满分69分)18(10分)如图,在四边形ABCD中,ACBD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分ABE; (2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长; (3)如图,若点F为AB的中点,连结FN、FM,求证:MFNBDC19(5分)(1)计算:22+(1)0+2sin60(2)先化简,再求值:(),其中x=120(8分)如图,在平面直角坐标系中
7、,抛物线y=x22ax与x轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是1(1)求k,a,b的值;(2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,当PBCD时,点Q是直线AB上一点,若BPQ+CBO=180,求Q点坐标21(10分)如图所示,正方形网格中,ABC为格点三角形(即三角形的顶点都在格点上)(1)把ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的A1B1C1;(2)把A1B1C1
8、绕点A1按逆时针方向旋转90,在网格中画出旋转后的A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长22(10分)某车间的甲、乙两名工人分别同时生产只同一型号的零件,他们生产的零件(只)与生产时间(分)的函数关系的图象如图所示根据图象提供的信息解答下列问题:(1)甲每分钟生产零件_只;乙在提高生产速度之前已生产了零件_只;(2)若乙提高速度后,乙的生产速度是甲的倍,请分别求出甲、乙两人生产全过程中,生产的零件(只)与生产时间(分)的函数关系式;(3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产23(12分)如图,菱形AB
9、CD的边长为20cm,ABC120,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿AB的路线向点B运动;过点P作PQBD,与AC相交于点Q,设运动时间为t秒,0t1(1)设四边形PQCB的面积为S,求S与t的关系式;(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由24(14分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投
10、放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元今年年初,“共享单车”试点投放在某市中心城区正式启动投放A,B两种款型的单车共100辆,总价值36800元试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各
11、选项分析判断后利用排除法求解:【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:A、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;B、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误故选C【点睛】考核知识点:正方体的表面展开图.2、A【解析】分析:由SABC=9、SAEF=1且AD为BC边的中线知SADE=SA
12、EF=2,SABD=SABC=,根据DAEDAB知,据此求解可得详解:如图,SABC=9、SAEF=1,且AD为BC边的中线,SADE=SAEF=2,SABD=SABC=,将ABC沿BC边上的中线AD平移得到ABC,AEAB,DAEDAB,则,即,解得AD=2或AD=-(舍),故选A点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点3、B【解析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在RtABC中,AB=,在RtACD中,AD=,AB:AD=:=,故选B【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题
13、的关键是学会利用参数解决问题4、D【解析】过B作BNAC于N,BMAD于M,根据折叠得出CAB=CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是8,得出选项即可【详解】解:如图:过B作BNAC于N,BMAD于M,将ABC沿AB所在直线翻折,使点C落在直线AD上的C处,CAB=CAB,BN=BM,ABC的面积等于12,边AC=3,ACBN=12,BN=8,BM=8,即点B到AD的最短距离是8,BP的长不小于8,即只有选项D符合,故选D【点睛】本题考查的知识点是折叠的性质,三角形的面积,角平分线性质的应用,解题关键是求出B到AD的最短距离,注意:角平
14、分线上的点到角的两边的距离相等5、B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体故选B6、C【解析】解:将60000000000用科学记数法表示为:61故选C【点睛】本题考查科学记数法表示较大的数,掌握科学计数法的一般形式是解题关键7、A【解析】根据二次函数的平移规律即可得出【详解】解:向右平移 1 个单位长度,再向下平移
15、3 个单位长度,所得的抛物线的函数表达式为故答案为:A【点睛】本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律8、C【解析】解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C9、D【解析】过点C作CDx轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明ABOCAD,得到ADOB2,CDAO1,则C点坐标可求.【详解】如图,过点C作CDx轴与D.函数y=2x+2的图象分别与x轴,y轴交于A,B两点,当x0时,y2,则B(0,2);当y0时,x1,则A(1,0).ACAB,ACAB,
16、BAOCAD90,ABOCAD.在ABO和CAD中,ABOCAD,ADOB2,CDOA1,ODOAAD123,C点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.10、A【解析】试题解析:一根圆柱形的空心钢管任意放置,不管钢管怎么放置,它的三视图始终是,主视图是它们中一个,主视图不可能是故选A.二、填空题(共7小题,每小题3分,满分21分)11、【解析】已知ABO是等边三角形,通过作高BC,利用等边三角形的性质可以求出OB和OC的长度;由于RtOBC中一条直角边和一条斜边的长度已知,根据勾股定理还
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 辽宁省 抚顺市 望花区 达标 名校 2022 2023 学年 联考 最后 数学试题 解析
限制150内