《豫东名校2023年高考冲刺押题(最后一卷)数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《豫东名校2023年高考冲刺押题(最后一卷)数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设双曲线(a0,b0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是 ( )ABCD2已知双曲线的一条渐近线与直线垂直,则双曲线的离
2、心率等于( )ABCD3某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下:小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的;小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是( )A小王或小李B小王C小董D小李4德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于的级数展开式,该公式于明朝初年传入我国.
3、在我国科技水平业已落后的情况下,我国数学家天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有割圆密率捷法一书,为我国用级数计算开创了先河.如图所示的程序框图可以用莱布尼兹“关于的级数展开式”计算的近似值(其中P表示的近似值),若输入,则输出的结果是( )ABCD5下列四个图象可能是函数图象的是( )ABCD6已知函数的图像的一条对称轴为直线,且,则的最小值为( )AB0CD7已知复数为虚数单位) ,则z 的虚部为( )A2BC4D8一个几何体的三
4、视图如图所示,则该几何体的体积为( )ABCD9如图所示的程序框图,若输入,则输出的结果是( )ABCD10下列不等式正确的是( )ABCD11在条件下,目标函数的最大值为40,则的最小值是( )ABCD212已知双曲线的一个焦点为,且与双曲线的渐近线相同,则双曲线的标准方程为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设,分别是椭圆C:()的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于E点,若满足,且,则椭圆C的离心率为_.14如图所示的流程图中,输出的值为_.15函数的极大值为_.16已知为等比数列,是它的前项和.若,且与的等差中项为,则_.三、解答题:共70分
5、。解答应写出文字说明、证明过程或演算步骤。17(12分)在数列中,(1)求数列的通项公式;(2)若存在,使得成立,求实数的最小值18(12分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.(1)求曲线的方程;(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.19(12分)随着电子阅读的普及,传统纸质媒体遭受到了强烈的冲击某杂志社近9年来的纸质广告收入如下表所示: 根据这9年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.243;根据后5年的数据,对和作线性相
6、关性检验,求得样本相关系数的绝对值为0.984.(1)如果要用线性回归方程预测该杂志社2019年的纸质广告收入,现在有两个方案,方案一:选取这9年数据进行预测,方案二:选取后5年数据进行预测从实际生活背景以及线性相关性检验的角度分析,你觉得哪个方案更合适?附:相关性检验的临界值表:(2)某购物网站同时销售某本畅销书籍的纸质版本和电子书,据统计,在该网站购买该书籍的大量读者中,只购买电子书的读者比例为,纸质版本和电子书同时购买的读者比例为,现用此统计结果作为概率,若从上述读者中随机调查了3位,求购买电子书人数多于只购买纸质版本人数的概率20(12分)已知xR,设,记函数.(1)求函数取最小值时x
7、的取值范围;(2)设ABC的角A,B,C所对的边分别为a,b,c,若,求ABC的面积S的最大值.21(12分)已知函数f(x)=ex-x2 -kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点(1)求实数k的取值范围;(2)证明:f(x)的极大值不小于122(10分)唐诗是中国文学的瑰宝.为了研究计算机上唐诗分类工作中检索关键字的选取,某研究人员将唐诗分成7大类别,并从全唐诗48900多篇唐诗中随机抽取了500篇,统计了每个类别及各类别包含“花”、“山”、“帘”字的篇数,得到下表:爱情婚姻咏史怀古边塞战争山水田园交游送别羁旅思乡其他总计篇数100645599917318500含
8、“山”字的篇数5148216948304271含“帘”字的篇数2120073538含“花”字的篇数606141732283160(1)根据上表判断,若从全唐诗含“山”字的唐诗中随机抽取一篇,则它属于哪个类别的可能性最大,属于哪个类别的可能性最小,并分别估计该唐诗属于这两个类别的概率;(2)已知检索关键字的选取规则为:若有超过95%的把握判断“某字”与“某类别”有关系,则“某字”为“某类别”的关键字;若“某字”被选为“某类别”关键字,则由其对应列联表得到的的观测值越大,排名就越靠前;设“山”“帘”“花”和“爱情婚姻”对应的观测值分别为,.已知,请完成下面列联表,并从上述三个字中选出“爱情婚姻”类
9、别的关键字并排名.属于“爱情婚姻”类不属于“爱情婚姻”类总计含“花”字的篇数不含“花”的篇数总计附:,其中.0.050.0250.0103.8415.0246.635参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A2、B【解析】由于直线的斜率k,所以一条渐近线的斜率为,即,所以,选B.3、D【解析】根据题意,分别假设一个正确,推理出与假设不矛盾,即可得出结论.【详解】解:由题意知,若只有小王的说法正确,则小王对
10、应“入班即静”,而否定小董说法后得出:小王对应“天道酬勤”,则矛盾;若只有小董的说法正确,则小董对应“天道酬勤”,否定小李的说法后得出:小李对应“细节决定成败”,所以剩下小王对应“入班即静”,但与小王的错误的说法矛盾;若小李的说法正确,则“细节决定成败”不是小李的,则否定小董的说法得出:小王对应“天道酬勤”,所以得出“细节决定成败”是小董的,剩下“入班即静”是小李的,符合题意.所以“入班即静”的书写者是:小李.故选:D.【点睛】本题考查推理证明的实际应用.4、B【解析】执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.【详解】由题意,执行给定的程序框图,输入,可得:第1次循环:;第
11、2次循环:;第3次循环:;第10次循环:,此时满足判定条件,输出结果,故选:B.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5、C【解析】首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.【详解】的定义域为,其图象可由的图象沿轴向左平移1个单位而得到,为奇函数,图象关于原点对称,的图象关于点成中心对称.可排除A、D项.当时,B项不正确.故选:C【点睛】本题考查函数
12、的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.6、D【解析】运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.【详解】由题意,函数为辅助角,由于函数的对称轴的方程为,且,即,解得,所以,又由,所以函数必须取得最大值和最小值,所以可设,所以,当时,的最小值,故选D.【点睛】本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.7、A【解析】对复数进行乘法运
13、算,并计算得到,从而得到虚部为2.【详解】因为,所以z 的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.8、A【解析】根据题意,可得几何体,利用体积计算即可.【详解】由题意,该几何体如图所示:该几何体的体积.故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题9、B【解析】列举出循环的每一步,可得出输出结果.【详解】,不成立,;不成立,;不成立,;成立,输出的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.10、D【解析】根据,利用排除法,即可求解【详解】由,可排除A、B、C选项,又由,所
14、以故选D【点睛】本题主要考查了三角函数的图象与性质,以及对数的比较大小问题,其中解答熟记三角函数与对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题11、B【解析】画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.【详解】如图所示,画出可行域和目标函数,根据图像知:当时,有最大值为,即,故.当,即时等号成立.故选:.【点睛】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.12、B【解析】根据焦点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解.【详解】双曲线与的渐近线相同,且焦点在轴上,可设双曲线的方程为,一个焦点为,故的
15、标准方程为.故选:B【点睛】此题考查根据双曲线的渐近线和焦点求解双曲线的标准方程,易错点在于漏掉考虑焦点所在坐标轴导致方程形式出错.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】采用数形结合,计算以及,然后根据椭圆的定义可得,并使用余弦定理以及,可得结果.【详解】如图由,所以由,所以又,则所以所以化简可得:则故答案为:【点睛】本题考查椭圆的定义以及余弦定理的使用,关键在于根据角度求出线段的长度,考查分析能力以及计算能力,属中档题.14、4【解析】根据流程图依次运行直到,结束循环,输出n,得出结果.【详解】由题:,结束循环,输出.故答案为:4【点睛】此题考查根据程序框图运行结果求
16、输出值,关键在于准确识别循环结构和判断框语句.15、【解析】对函数求导,根据函数单调性,即可容易求得函数的极大值.【详解】依题意,得.所以当时,;当时,.所以当时,函数有极大值.故答案为:.【点睛】本题考查利用导数研究函数的性质,考查运算求解能力以及化归转化思想,属基础题.16、【解析】设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.【详解】由等比数列的性质可得,由于与的等差中项为,则,则,因此,.故答案为:.【点睛】本题考查等比数列求和,解答的关键就是等比数列的公比,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步
17、骤。17、(1);(2)【解析】(1)由得,两式相减可得是从第二项开始的等比数列,由此即可求出答案;(2),分类讨论,当时,作商法可得数列为递增数列,由此可得答案,【详解】解:(1)因为,两式相减得:,即,是从第二项开始的等比数列,则,;(2),当时,;当时,设递增,所以实数的最小值【点睛】本题主要考查地推数列的应用,属于中档题18、(1);(2)是定值,.【解析】(1)设出M的坐标为,采用直接法求曲线的方程;(2)设AB的方程为,,,求出AT方程,联立直线方程得D点的坐标,同理可得E点的坐标,最后利用向量数量积算即可.【详解】(1)设动点M的坐标为,由知,又在直线上,所以P点坐标为,又,点为
18、的中点,所以,由得,即;(2)设直线AB的方程为,代入得,设,则,设,则,所以AT的直线方程为即,令,则,所以D点的坐标为,同理E点的坐标为,于是,所以,从而,所以是定值.【点睛】本题考查了直接法求抛物线的轨迹方程、直线与抛物线位置关系中的定值问题,在处理此类问题一般要涉及根与系数的关系,本题思路简单,但计算量比较大,是一道有一定难度的题.19、(1)选取方案二更合适;(2)【解析】(1) 可以预见,2019年的纸质广告收入会接着下跌,前四年的增长趋势已经不能作为预测后续数据的依据,而后5年的数据得到的相关系数的绝对值,所以有的把握认为与具有线性相关关系,从而可得结论;(2)求得购买电子书的概
19、率为,只购买纸质书的概率为,购买电子书人数多于只购买纸质书人数有两种情况:3人购买电子书,2人购买电子书一人只购买纸质书,由此能求出购买电子书人数多于只购买纸质版本人数的概率.【详解】(1)选取方案二更合适,理由如下:题中介绍了,随着电子阅读的普及,传统纸媒受到了强烈的冲击,从表格中的数据中可以看出从2014年开始,广告收入呈现逐年下降的趋势,可以预见,2019年的纸质广告收入会接着下跌,前四年的增长趋势已经不能作为预测后续数据的依据. 相关系数越接近1,线性相关性越强,因为根据9年的数据得到的相关系数的绝对值,我们没有理由认为与具有线性相关关系;而后5年的数据得到的相关系数的绝对值,所以有的
20、把握认为与具有线性相关关系. (2) 因为在该网站购买该书籍的大量读者中,只购买电子书的读者比例为,纸质版本和电子书同时购买的读者比例为,所以从该网站购买该书籍的大量读者中任取一位,购买电子书的概率为,只购买纸质书的概率为, 购买电子书人数多于只购买纸质书人数有两种情况:3人购买电子书,2人购买电子书一人只购买纸质书.概率为:.【点睛】本题主要考查最优方案的选择,考查了相关关系的定义以及互斥事件的概率与独立事件概率公式的应用,考查阅读能力与运算求解能力,属于中档题. 与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解
21、题,只有吃透题意,才能将实际问题转化为数学模型进行解答.20、(1);(2)【解析】(1)先根据向量的数量积的运算,以及二倍角公式和两角和的正弦公式化简得到f(x)=,再根据正弦函数的性质即可求出答案;(2)先求出C的大小,再根据余弦定理和基本不等式,即可求出,根据三角形的面积公式即可求出答案.【详解】(1). 令,kZ,即时,取最小值, 所以,所求的取值集合是;(2)由,得,因为,所以,所以,. 在中,由余弦定理,得,即,当且仅当时取等号,所以的面积,因此的面积的最大值为.【点睛】本题考查了向量的数量积的运算和二倍角公式,两角和的正弦公式,余弦定理和基本不等式,三角形的面积公式,属于中档题.
22、21、(1);(2)见解析【解析】(1)求出,记,问题转化为方程有两个不同解,求导,研究极值即可得结果 ;(2)由(1)知,在区间上存在极大值点,且,则可求出极大值,记,求导,求单调性,求出极值即可.【详解】(1),由, 记,由,且时,单调递减,时,单调递增, 由题意,方程有两个不同解,所以;(2)解法一:由(1)知,在区间上存在极大值点,且,所以的极大值为, 记,则,因为,所以,所以时,单调递减,时,单调递增, 所以,即函数的极大值不小于1. 解法二:由(1)知,在区间上存在极大值点,且,所以的极大值为, 因为,所以.即函数的极大值不小于1.【点睛】本题考查导数研究函数的单调性,极值,考查学
23、生综合分析能力与转化能力,是一道中档题.22、(1)该唐诗属于“山水田园”类别的可能性最大,属于“其他”类别的可能性最小;属于“山水田园”类别的概率约为;属于“其他”类别的概率约为(2)填表见解析;选择“花”,“帘”作为“爱情婚姻”类别的关键字,且排序为“花”,“帘”【解析】(1)根据统计图表算出频率,比较大小即可判断;(2)根据统计图表完成列联表,算出观测值,查表判断.【详解】(1)由上表可知,该唐诗属于“山水田园”类别的可能性最大,属于“其他”类别的可能性最小属于“山水田园”类别的概率约为;属于“其他”类别的概率约为;(2)列联表如下:属于“爱情婚姻”类不属于“爱情婚姻”类共计含“花”的篇数60100160不含“花”的篇数40300340共计100400500计算得:;因为,所以有超过95%的把握判断“花”字和“帘”字均与“爱情婚姻”有关系,故“花”和“帘”是“爱情婚姻”的关键字,而“山”不是;又因为,故选择“花”,“帘”作为“爱情婚姻”类别的关键字,且排序为“花”,“帘”.【点睛】本题主要考查统计图表、频率与概率的关系、用样本估计总体、独立性检验等知识点.考查了学生对统计图表的识读与计算能力,考查了学生的数据分析、数学运算等核心素养.
限制150内