《重庆市万州二中2023年高考仿真模拟数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《重庆市万州二中2023年高考仿真模拟数学试卷含解析.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若, 则双曲线的离心率为()ABC4D22已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与
2、圆锥的体积的比值为( )ABCD3已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( )ABCD4已知双曲线的左、右焦点分别为,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为( )ABCD5函数的大致图象是ABCD6如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,则( )A在点F的运动过程中,存在EF/BC1B在点M的运动过程中,不存在B1MAEC四面体EMAC的体积为定值D四面体FA1C1B的体积不为定值7设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为
3、( )ABCD8如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是( )AACBEBEF平面ABCDC三棱锥A-BEF的体积为定值D异面直线AE,BF所成的角为定值9已知复数为虚数单位) ,则z 的虚部为( )A2BC4D10已知函,则的最小值为( )AB1C0D11已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,当取得最小值时,函数的解析式为( )ABCD12已知,是球的球面上四个不同的点,若,且平面平面,则球的表面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13集合,则_.14已知,则_.15在
4、四棱锥中,底面为正方形,面分别是棱的中点,过的平面交棱于点,则四边形面积为_.16如图梯形为直角梯形,图中阴影部分为曲线与直线围成的平面图形,向直角梯形内投入一质点,质点落入阴影部分的概率是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,.(1)当时,求函数在点处的切线方程;比较与的大小; (2)当时,若对时,且有唯一零点,证明:18(12分)在四棱锥中,底面是边长为2的菱形,是的中点.(1)证明:平面;(2)设是直线上的动点,当点到平面距离最大时,求面与面所成二面角的正弦值.19(12分)已知数列的前项和为,且满足(1)求数列的通项公式;(2)若,且数
5、列前项和为,求的取值范围20(12分)为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.21(12分)已知椭圆过点且椭圆的左、右焦点与短轴的端
6、点构成的四边形的面积为.(1)求椭圆C的标准方程:(2)设A是椭圆的左顶点,过右焦点F的直线,与椭圆交于P,Q,直线AP,AQ与直线 交于M,N,线段MN的中点为E.求证:;记,的面积分别为、,求证:为定值.22(10分)已知椭圆的焦距是,点是椭圆上一动点,点是椭圆上关于原点对称的两点(与不同),若直线的斜率之积为.()求椭圆的标准方程;()是抛物线上两点,且处的切线相互垂直,直线与椭圆相交于两点,求的面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,根据可得,再根据又,由可得,化简可得,即可求出离心率
7、【详解】解:设,即,又,由可得,即,故选:D【点睛】本题考查双曲线的方程和性质,考查了斜率的计算,离心率的求法,属于基础题和易错题2、B【解析】计算求半径为,再计算球体积和圆锥体积,计算得到答案.【详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.3、B【解析】试题分析:由题意得,所以,所求双曲线方程为考点:双曲线方程.4、C【解析】由双曲线定义得,OM是的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.【详解】根据题意,点P一定在左支上.由及,得,再结合M为
8、的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.由,得. 由,解得,即,则渐近线方程为.故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.5、A【解析】利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,可排除D选项;当时,当时,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题6、C【解析】采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.【详解】A错误由平面,/而与平面相交,故可知与平面相交,所以不存在E
9、F/BC1B错误,如图,作由又平面,所以平面又平面,所以由/,所以,平面所以平面,又平面所以,所以存在C正确四面体EMAC的体积为其中为点到平面的距离,由/,平面,平面所以/平面,则点到平面的距离即点到平面的距离,所以为定值,故四面体EMAC的体积为定值错误由/,平面,平面所以/平面,则点到平面的距离即为点到平面的距离,所以为定值所以四面体FA1C1B的体积为定值故选:C【点睛】本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.7、B【解析】由圆过原点,知中有一点与原点重合,作出图形,由,得,从而直线倾斜角为,写出点坐标,代入抛物线方
10、程求出参数,可得点坐标,从而得三角形面积【详解】由题意圆过原点,所以原点是圆与抛物线的一个交点,不妨设为,如图,由于,点坐标为,代入抛物线方程得,故选:B.【点睛】本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解8、D【解析】A通过线面的垂直关系可证真假;B根据线面平行可证真假;C根据三棱锥的体积计算的公式可证真假;D根据列举特殊情况可证真假.【详解】A因为,所以平面,又因为平面,所以,故正确;B因为,所以,且平面,平面,所以平面,故正确;C因为为定值,到平面的距离为
11、,所以为定值,故正确;D当,取为,如下图所示:因为,所以异面直线所成角为,且,当,取为,如下图所示:因为,所以四边形是平行四边形,所以,所以异面直线所成角为,且,由此可知:异面直线所成角不是定值,故错误.故选:D.【点睛】本题考查立体几何中的综合应用,涉及到线面垂直与线面平行的证明、异面直线所成角以及三棱锥体积的计算,难度较难.注意求解异面直线所成角时,将直线平移至同一平面内.9、A【解析】对复数进行乘法运算,并计算得到,从而得到虚部为2.【详解】因为,所以z 的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.10、B【解析】,利用整体换元法求最小值.【详解】由已知,又,
12、故当,即时,.故选:B.【点睛】本题考查整体换元法求正弦型函数的最值,涉及到二倍角公式的应用,是一道中档题.11、A【解析】先求出平移后的函数解析式,结合图像的对称性和得到A和.【详解】因为关于轴对称,所以,所以,的最小值是.,则,所以.【点睛】本题主要考查三角函数的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系.12、A【解析】由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案【详解】如图,取BC中点G,连接AG,DG,则,分别取与的外心E,F,分别过E,F作平面ABC与平面DBC的垂线,相交于O,则O为四面体的球心,由,得正方形OEGF的边长为,则,四面体的外接球的半
13、径,球O的表面积为故选A【点睛】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析出集合A为奇数构成的集合,即可求得交集.【详解】因为表示为奇数,故.故答案为:【点睛】此题考查求集合的交集,根据已知集合求解,属于简单题.14、【解析】首先利用,将其两边同时平方,利用同角三角函数关系式以及倍角公式得到,从而求得,利用诱导公式求得,得到结果.【详解】因为,所以,即,所以,故答案是.【点睛】该题考查的是有关三角函数化简求值问题,涉及到的知识点有同角三角函数关系式,倍角公式,诱导公式,属于简单题目.15、【解析】设是
14、中点,由于分别是棱的中点,所以,所以,所以四边形是平行四边形.由于平面,所以,而,所以平面,所以.由于,所以,也即,所以四边形是矩形. 而.从而.故答案为:.【点睛】本小题主要考查空间平面图形面积的计算,考查线面垂直的判定,考查空间想象能力和逻辑推理能力,属于中档题.16、【解析】联立直线与抛物线方程求出交点坐标,再利用定积分求出阴影部分的面积,利用梯形的面积公式求出,最后根据几何概型的概率公式计算可得;【详解】解:联立解得或,即,故答案为:【点睛】本题考查几何概型的概率公式的应用以及利用微积分基本定理求曲边形的面积,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。1
15、7、(1)见解析,见解析;(2)见解析【解析】(1)把代入函数解析式,求出函数的导函数得到,再求出,利用直线方程的点斜式求函数在点处的切线方程;令,利用导数研究函数的单调性,可得当时,;当时,;当时,(2)由题意,在上有唯一零点利用导数可得当时,在上单调递减,当,时,在,上单调递增,得到由在恒成立,且有唯一解,可得,得,即令,则,再由在上恒成立,得在上单调递减,进一步得到在上单调递增,由此可得【详解】解:(1)当时,又,切线方程为,即;令,则,在上单调递减又,当时,即;当时,即;当时,即证明:(2)由题意,而,令,解得,在上有唯一零点当时,在上单调递减,当,时,在,上单调递增在恒成立,且有唯一
16、解,即,消去,得,即令,则,在上恒成立,在上单调递减,又, ,在上单调递增,【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查利用导数研究函数的单调性,考查逻辑思维能力与推理论证能力,属难题18、(1)证明见解析(2)【解析】(1)取中点,连接,根据菱形的性质,结合线面垂直的判定定理和性质进行证明即可;(2)根据面面垂直的判定定理和性质定理,可以确定点到直线的距离即为点到平面的距离,结合垂线段的性质可以确定点到平面的距离最大,最大值为1.以为坐标原点,直线分别为轴建立空间直角坐标系.利用空间向量夹角公式,结合同角的三角函数关系式进行求解即可.【详解】(1)证明:取中点,连接,因为四边形
17、为菱形且.所以,因为,所以,又,所以平面,因为平面,所以.同理可证,因为,所以平面.(2)解:由(1)得平面,所以平面平面,平面平面.所以点到直线的距离即为点到平面的距离.过作的垂线段,在所有的垂线段中长度最大的为,此时必过的中点,因为为中点,所以此时,点到平面的距离最大,最大值为1.以为坐标原点,直线分别为轴建立空间直角坐标系.则所以平面的一个法向量为,设平面的法向量为,则即取,则,所以,所以面与面所成二面角的正弦值为.【点睛】本题考查了线面垂直的判定定理和性质的应用,考查了二面角的向量求法,考查了推理论证能力和数学运算能力.19、(1)(2)【解析】(1)由,可求,然后由时,可得,根据等比
18、数列的通项可求(2)由,而,利用裂项相消法可求.【详解】(1)当时,解得,当时,得,即,数列是以2为首项,2为公比的等比数列,;(2),.【点睛】本题考查递推公式在数列的通项求解中的应用,等比数列的通项公式、裂项求和方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力20、(1);(2)见解析【解析】(1)按分层抽样得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超几何分布求解即可【详解】(1)因为学生总数为1000人,该年级分文、理科按男女用分层抽样抽取10人,则抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能
19、取值为0,1,2,3,的分布列为0123.【点睛】本题考查分层抽样,考查超几何分布及期望,考查运算求解能力,是基础题21、(1);(2)证明见解析;证明见解析【解析】(1)解方程即可;(2)设直线,将点的坐标用表示,证明即可;分别用表示,的面积即可.【详解】(1)解之得:的标准方程为:(2), ,设直线代入椭圆方程:设,直线,直线, ,.,所以.【点睛】本题考查了直接法求椭圆的标准方程、直线与椭圆位置关系中的定值问题,在处理此类问题一般要涉及根与系数的关系,本题思路简单,但计算量比较大,是一道有一定难度的题.22、();()【解析】()设点的坐标,表达出直线的斜率之积,再根据三点均在椭圆上,根据椭圆的方程代入斜率之积的表达式列式求解即可.()设直线的方程为,根据直线的斜率之积为可得,再联立直线与椭圆的方程,表达出面积公式,再换元利用基本不等式求解即可.【详解】()设,则,又,故,即,故,又,故.故椭圆的标准方程为.()设直线的方程为,由 ,故,又,故,因为处的切线相互垂直故.故直线的方程为.联立故.故,代入韦达定理有设,则.当且仅当时取等号.故的面积的最大值为.【点睛】本题主要考查了根据椭圆上的点坐标满足的关系式求解椭圆基本量求方程的方法,同时也考查了抛物线的切线问题以及椭圆中面积的最值问题,需要根据导数的几何意义求切线斜率,再换元利用基本不等式求解.属于难题.
限制150内