陕西省西安市高新唐南中学2023届高三3月份第一次模拟考试数学试卷含解析.doc
《陕西省西安市高新唐南中学2023届高三3月份第一次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省西安市高新唐南中学2023届高三3月份第一次模拟考试数学试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是( )A甲得
2、分的平均数比乙大B甲得分的极差比乙大C甲得分的方差比乙小D甲得分的中位数和乙相等2已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则( )AB3CD23已知函数且,则实数的取值范围是( )ABCD4已知椭圆的中心为原点,为的左焦点,为上一点,满足且,则椭圆的方程为( )ABCD5某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为ABCD6双曲线的左右焦点为,一条渐近线方程为,过点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为( )AB3CD27某几何体的三视图如图所示,则该几何体的体积为( )AB3CD48设,集合,则
3、()ABCD9已知,则( )ABCD10已知命题,那么为( )ABCD11计算等于( )ABCD12设,均为非零的平面向量,则“存在负数,使得”是“”的A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金;随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金若随机变量1和2分别表示赌客在一局赌博中的赌金和奖金,则D(1)_,E(1)E(2)_14已知为椭圆的左、右焦点,点在椭圆上移动时,的内心的轨迹方程
4、为_15已知双曲线的一条渐近线方程为,则_16已知,且,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)(某工厂生产零件A,工人甲生产一件零件A,是一等品、二等品、三等品的概率分别为,工人乙生产一件零件A,是一等品、二等品、三等品的概率分别为己知生产一件一等品、二等品、三等品零件A给工厂带来的效益分别为10元、5元、2元.(1)试根据生产一件零件A给工厂带来的效益的期望值判断甲乙技术的好坏;(2)为鼓励工人提高技术,工厂进行技术大赛,最后甲乙两人进入了决赛决赛规则是:每一轮比赛,甲乙各生产一件零件A,如果一方生产的零件A品级优干另一方生产的零件,则该方得分1分,
5、另一方得分-1分,如果两人生产的零件A品级一样,则两方都不得分,当一方总分为4分时,比赛结束,该方获胜Pi+4(i=4,3,2,4)表示甲总分为i时,最终甲获胜的概率写出P0,P8的值;求决赛甲获胜的概率18(12分)2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID19),简称“新冠肺炎”.下图是2020年1月15日至1月24日累计确诊人数随时间变化的散点图.为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个
6、回归模型,根据1月15日至1月24日的数据(时间变量t的值依次1,2,10)建立模型和.(1)根据散点图判断,与哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)(2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;(3)以下是1月25日至1月29日累计确诊人数的真实数据,根据(2)的结果回答下列问题:时间1月25日1月26日1月27日1月28日1月29日累计确诊人数的真实数据19752744451559747111()当1月25日至1月27日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的
7、回归方程是否可靠?()2020年1月24日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?附:对于一组数据(,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:其中,.5.53901938576403152515470010015022533850719(12分)已知函数.(1)若函数,求的极值;(2)证明:. (参考数据: )20(12分)己知等差数列的公差,且,成等比数列.(1)求使不等式成立的最大自然数n;(2)记数列的前n项和为,求证:.21(12分)已知椭圆的右焦点为
8、,过点且与轴垂直的直线被椭圆截得的线段长为,且与短轴两端点的连线相互垂直.(1)求椭圆的方程;(2)若圆上存在两点,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形面积的取值范围.22(10分)为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在市与市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.(1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:A市居民B市居民喜欢杨树300200喜欢木棉树250250是否有的把握认为喜欢树木的种类与居民所在的城市具有相关性;(2)若从所有的
9、路口中随机抽取4个路口,恰有个路口种植杨树,求的分布列以及数学期望;(3)在所有的路口种植完成后,选取3个种植同一种树的路口,记总的选取方法数为,求证:.附:0.1000.0500.0100.0012.7063.8416.63510.828参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由平均数、方差公式和极差、中位数概念,可得所求结论【详解】对于甲,;对于乙,故正确;甲的极差为,乙的极差为,故错误;对于甲,方差.5,对于乙,方差,故正确;甲得分的中位数为,乙得分的中位数为,故正确故选:【点睛】本题考查茎叶图的应用,考
10、查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于基础题2、D【解析】根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.3、B【解析】构造函数,判断出的单调性和奇偶性,由此求得不等式的解集.【详解】构造函数,由解得,所以的定义域为,且,所以为奇函数,而,所以在定义域上为增函数,且.由得,即,所以.故选:B【点睛】本小题主要考查利用函数的单调性和奇偶性解不等式,属于中档题.4、B【解析】由题意可得c=,设右焦点
11、为F,由|OP|=|OF|=|OF|知,PFF=FPO,OFP=OPF,所以PFF+OFP=FPO+OPF,由PFF+OFP+FPO+OPF=180知,FPO+OPF=90,即PFPF在RtPFF中,由勾股定理,得|PF|=,由椭圆定义,得|PF|+|PF|=2a=4+8=12,从而a=6,得a2=36,于是 b2=a2c2=36=16,所以椭圆的方程为故选B点睛:椭圆的定义:到两定点距离之和为常数的点的轨迹,当和大于两定点间的距离时,轨迹是椭圆,当和等于两定点间的距离时,轨迹是线段(两定点间的连线段),当和小于两定点间的距离时,轨迹不存在5、C【解析】由三视图可知,该几何体是三棱锥,底面是边
12、长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C6、A【解析】设,直线的方程为,联立方程得到,根据向量关系化简到,得到离心率.【详解】设,直线的方程为.联立整理得,则.因为,所以为线段的中点,所以,整理得,故该双曲线的离心率.故选:.【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力和转化能力.7、C【解析】首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积.【详解】解:根据几何体的三视图转换为几何体为:该几何体为由一个三棱柱体,切去一个三棱锥体,如图所示:故:.故选:C.【点睛】本题考查了由三视图求几何体的体积、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 陕西省 西安市 高新唐 南中 2023 届高三 月份 第一次 模拟考试 数学试卷 解析
限制150内