《陕西省榆林市第一中学2023届中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《陕西省榆林市第一中学2023届中考五模数学试题含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图的平面图形绕直线l旋转一周,可以得到的立体图形是( )ABCD2九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走
2、路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走x步才能追上走路慢的人,那么,下面所列方程正确的是ABCD3将抛物线yx2x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()Ayx2+3x+6Byx2+3xCyx25x+10Dyx25x+44将二次函数yx2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )Ay(x1)22By(x1)22Cy(x1)22Dy(x1)225有若干个完全相同的小正方体堆成一个如图所示
3、几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A2B3C4D56下列方程中,两根之和为2的是()Ax2+2x3=0Bx22x3=0Cx22x+3=0D4x22x3=07如图在ABC中,ACBC,过点C作CDAB,垂足为点D,过D作DEBC交AC于点E,若BD6,AE5,则sinEDC的值为()ABCD8如图,由四个正方体组成的几何体的左视图是( )ABCD9如图所示的两个四边形相似,则的度数是()A60B75C87D12010一、单选题如图中的小正方形边长都相等,若MNPMEQ,则点Q可能是图中的()A点AB点BC点CD点D二、填空题
4、(本大题共6个小题,每小题3分,共18分)11在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,1)、B(1,1),将线段AB平移后得到线段AB,若点A的坐标为(2,2),则点B的坐标为_12一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_个13一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_14把抛物线y=2x2向右平移3个单位,
5、再向下平移2个单位,得到的新的抛物线的表达式是_15可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为.数字0.00092用科学记数法表示是_16如图,五边形是正五边形,若,则_三、解答题(共8题,共72分)17(8分)如图,ABD是O的内接三角形,E是弦BD的中点,点C是O外一点且DBCA,连接OE延长与圆相交于点F,与BC相交于点C(1)求证:BC是O的切线;(2)若O的半径为6,BC8,求弦BD的长18(8分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出
6、所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.19(8分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A非常了解;B比较了解;C基本了解;D不了解根据调查统计结果,绘制了不完整的三种统计图表对雾霾了解程度的统计表:对雾霾的了解程度百分比A非常了解5%B比较了解mC基本了解45%D不了解
7、n请结合统计图表,回答下列问题(1)本次参与调查的学生共有 人,m= ,n= ;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是 度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球若摸出的两个球上的数字和为奇数,则小明去;否则小刚去请用树状图或列表法说明这个游戏规则是否公平20(8分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,
8、当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34,45,其中点O,A,B在同一条直线上求AC和AB的长(结果保留小数点后一位)(参考数据:sin340.56;cos340.83;tan340.67)21(8分)如图,已知二次函数的图象与轴交于,两点在左侧),与轴交于点,顶点为(1)当时,求四边形的面积;(2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;(3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长至,且,若的外角平分线交点在新抛物线上,求点坐标22(10分)解分式方程:=23(12分)某企业信息部进
9、行市场调研发现:信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元)122.535yA(万元)0.40.811.22信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yBax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元(1)求出yB与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此
10、方案能获得的最大利润是多少?24如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键2、B【解析】解:设走路快的人要
11、走 x 步才能追上走路慢的人,根据题意得:故选B点睛:本题考查了一元一次方程的应用找准等量关系,列方程是关键3、A【解析】先将抛物线解析式化为顶点式,左加右减的原则即可.【详解】 ,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;4、A【解析】试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x1)2+2,故选A考点:二次函数图象与几何变换5、C【解析】若要保持俯视图和左视
12、图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选C6、B【解析】由根与系数的关系逐项判断各项方程的两根之和即可【详解】在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;在方程x2-2x-3=0中,两根之和等于2,故B符合题意;在方程x2-2x+3=0中,=(-2)2-43=-80,则该方程无实数根,故C不符合题意;在方程4x2-2x-3=0中,两根之和等于-,故D不符合题意,故选B【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键7、A【解析】由等腰三角形三线
13、合一的性质得出AD=DB=6,BDC=ADC=90,由AE=5,DEBC知AC=2AE=10,EDC=BCD,再根据正弦函数的概念求解可得【详解】ABC中,ACBC,过点C作CDAB,ADDB6,BDCADC90,AE5,DEBC,AC2AE10,EDCBCD,sinEDCsinBCD,故选:A【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点8、B【解析】从左边看可以看到两个小正方形摞在一起,故选B.9、C【解析】【分析】根据相似多边形性质:对应角相等.【详解】由已知可得:的度数是:360-60-75-138=87故选C【点
14、睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.10、D【解析】根据全等三角形的性质和已知图形得出即可【详解】解:MNPMEQ,点Q应是图中的D点,如图,故选:D【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等二、填空题(本大题共6个小题,每小题3分,共18分)11、 (5,4)【解析】试题解析:由于图形平移过程中,对应点的平移规律相同,由点A到点A可知,点的横坐标减6,纵坐标加3,故点B的坐标为 即 故答案为: 12、5【解析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.【
15、详解】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则,解得x=3,所以另一段长为18-3=15,因为153=5,所以是第5张故答案为:5.【点睛】本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.13、1【解析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值【详解】解:根据题意得1%,解得n1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球故答案为1【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左
16、右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率14、y=1(x3)11【解析】抛物线的平移,实际上就是顶点的平移,先求出原抛物线的顶点坐标,再根据平移规律,推出新抛物线的顶点坐标,根据顶点式可求新抛物线的解析式【详解】y=1x1的顶点坐标为(0,0),把抛物线右平移3个单位,再向下平移1个单位,得新抛物线顶点坐标为(3,1),平移不改变抛物线的二次项系数,平移后的抛物线的解析式是y=1(x3)11故答案为y=1(
17、x3)11【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)1+k(a,b,c为常数,a0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移; k值正上移,负下移”15、9.2101【解析】根据科学记数法的正确表示为,由题意可得0.00092用科学记数法表示是9.2101.【详解】根据科学记数法的正确表示形式可得:0.00092用科学记数法表示是9.2101.故答案为: 9.2101.【点睛】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.16、72【解析】分析:延长AB交于点F,根据得到2
18、=3,根据五边形是正五边形得到FBC=72,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,2=3,五边形是正五边形,ABC=108,FBC=72,1-2=1-3=FBC=72故答案为:72.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.三、解答题(共8题,共72分)17、(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OEBD, ,再由圆周角定理可得 ,从而得到 OBE DBC90,即 ,命题得证.(2)由勾股定理求出OC,再由OBC的面积求出BE,即可得出弦BD的长.试题解
19、析:(1)证明:如下图所示,连接OB. E是弦BD的中点, BEDE,OE BD, BOE A, OBE BOE90. DBC A, BOE DBC, OBE DBC90, OBC90,即BCOB, BC是 O的切线(2)解: OB6,BC8,BCOB, , , ,.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.18、(1):,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现
20、的结果如下:,共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,在规划1中,(小黄赢);红心牌点数是黑桃牌点数的整倍数有4种可能,在规划2中,(小黄赢).,小黄要在游戏中获胜,小黄会选择规则1.【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.19、解:(1)400;15%;35%(2)1(3)D等级的人数为:40035%=140,补全条形统计图如图所示:(4)列树状图得:从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,小明参加的概率为:P(数字之和为奇数);小刚参加的概率为:P(数字之和为偶数)P(数字之和为奇
21、数)P(数字之和为偶数),游戏规则不公平【解析】(1)根据“基本了解”的人数以及所占比例,可求得总人数:18045%=400人在根据频数、百分比之间的关系,可得m,n的值:(2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360的比可得出统计图中D部分扇形所对应的圆心角:36035%=1(3)根据D等级的人数为:40035%=140,据此补全条形统计图(4)用树状图或列表列举出所有可能,分别求出小明和小刚参加的概率,若概率相等,游戏规则公平;反之概率不相等,游戏规则不公平20、AC= 6.0km,AB= 1.7km;【解析】在RtAOC, 由的正切值和OC的长求出
22、OA, 在RtBOC, 由BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。【详解】由题意可得:AOC=90,OC=5km在RtAOC中,AC=,AC=6.0km,tan34=,OA=OCtan34=50.67=3.35km,在RtBOC中,BCO=45,OB=OC=5km,AB=53.35=1.651.7km答:AC的长为6.0km,AB的长为1.7km【点睛】本题主要考查三角函数的知识。21、(1)4;(2),;(3)【解析】(1)过点D作DEx轴于点E,求出二次函数的顶点D的坐标,然后求出A、B、C的坐标,然后根据即可得出结论;(2)设点是第二象限抛物线对称轴左侧上一点,
23、将沿轴翻折得到,点,连接,过点作于,过点作轴于,证出,列表比例式,并找出关于t的方程即可得出结论;(3)判断点D在直线上,根据勾股定理求出DH,即可求出平移后的二次函数解析式,设点,过点作于,于,轴于,根据勾股定理求出AG,联立方程即可求出m、n,从而求出结论【详解】解:(1)过点D作DEx轴于点E当时,得到,顶点,DE=1由,得,;令,得;,OC=3(2)如图1,设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,由翻折得:,;,轴,由勾股定理得:,解得:(不符合题意,舍去),;,(3)原抛物线的顶点在直线上,直线交轴于点,如图2,过点作轴于,;由题意,平移
24、后的新抛物线顶点为,解析式为,设点,则,过点作于,于,轴于,、分别平分,点在抛物线上,根据题意得:解得:【点睛】此题考查的是二次函数的综合大题,难度较大,掌握二次函数平移规律、二次函数的图象及性质、相似三角形的判定及性质和勾股定理是解决此题的关键22、x=1【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】方程两边都乘以x(x2),得:x=1(x2),解得:x=1,检验:x=1时,x(x2)=11=10,则分式方程的解为x=1【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验23、 (1)yB=0.2x2+1.6x(2)一次函
25、数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元【解析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值【详解】解:(1)yB=0.2x2+1.6x, (2)一次函数,yA=0.4x, (3)设投资B产品x万元,投资A产品(15x)万元,投资两种产品共获利W万元, 则W=(0.2x2+1.6x)+0.4(15x)=0.2x2+1.2x+6=0.2(x3)2+7.8, 当x=3时,W最大值=7.8, 答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.24、(1)见解析;(2)见解析;(3)见解析,.【解析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE.【点睛】本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.
限制150内