陕西省延安市第一中学2023年高三第三次模拟考试数学试卷含解析.doc
《陕西省延安市第一中学2023年高三第三次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省延安市第一中学2023年高三第三次模拟考试数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列函数中既关于直线对称,又在区间上为增函数的是( )A.BCD2若复数满足(为虚数单位),则其共轭复数的虚部为( )ABCD3已知,函数,若函数恰有三个零点,则( )ABCD4若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,
2、则表示复数的点是( )AEBFCGDH5曲线在点处的切线方程为( )ABCD6给出以下四个命题:依次首尾相接的四条线段必共面;过不在同一条直线上的三点,有且只有一个平面;空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;垂直于同一直线的两条直线必平行.其中正确命题的个数是( )A0B1C2D37已知椭圆的焦点分别为,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为( )ABCD8观察下列各式:,根据以上规律,则( )ABCD9如图所示,三国时代数学家赵爽在周髀算经中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形
3、(阴影),设直角三角形有一内角为,若向弦图内随机抛掷500颗米粒(米粒大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为( )A134B67C182D10810已知函数的一条切线为,则的最小值为( )ABCD11已知函数,存在实数,使得,则的最大值为( )ABCD12已知数列 是公比为 的等比数列,且 , , 成等差数列,则公比 的值为( )ABC 或 D 或 二、填空题:本题共4小题,每小题5分,共20分。13函数在区间上的值域为_.14已知向量,且,则_15圆关于直线的对称圆的方程为_.16已知三棱锥中,则该三棱锥的外接球的表面积是_.三、解答题:共70分。解答应写出文字说明、证明
4、过程或演算步骤。17(12分)已知ABC三内角A、B、C所对边的长分别为a,b,c,且3sin2A+3sin2B4sinAsinB+3sin2C(1)求cosC的值;(2)若a3,c,求ABC的面积18(12分)某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.维修次数23456甲设备51
5、03050乙设备05151515(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.19(12分)在直角坐标系中,椭圆的左、右焦点分别为,点在椭圆上且轴,直线交轴于点,椭圆的离心率为.(1)求椭圆的方程;(2)过的直线交椭圆于两点,且满足,求的面积.20(12分)如图,在四棱锥中,底面为直角梯形,平面底面,为的中点,是棱上的点且,.求证:平面平面以;求二面角的大小.21(12分)已知椭圆的焦点在轴上,且顺次连接四个顶点恰好构成了一个边长为且面积为的菱
6、形(1)求椭圆的方程;(2)设,过椭圆右焦点的直线交于、两点,若对满足条件的任意直线,不等式恒成立,求的最小值.22(10分)已知函数.(1)若曲线存在与轴垂直的切线,求的取值范围.(2)当时,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据函数的对称性和单调性的特点,利用排除法,即可得出答案.【详解】A中,当时,所以不关于直线对称,则错误;B中,所以在区间上为减函数,则错误;D中,而,则,所以不关于直线对称,则错误;故选:C.【点睛】本题考查函数基本性质,根据函数的解析式判断函数的对称性和单调性,属于基础
7、题.2、D【解析】由已知等式求出z,再由共轭复数的概念求得,即可得虚部.【详解】由zi1i,z ,所以共轭复数=-1+,虚部为1故选D【点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题3、C【解析】当时,最多一个零点;当时,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得【详解】当时,得;最多一个零点;当时,当,即时,在,上递增,最多一个零点不合题意;当,即时,令得,函数递增,令得,函数递减;函数最多有2个零点;根据题意函数恰有3个零点函数在上有一个零点,在,上有2个零点,如图:且,解得,故选【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及两个参数,故按
8、“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.4、C【解析】由于在复平面内点的坐标为,所以,然后将代入化简后可找到其对应的点.【详解】由,所以,对应点.故选:C【点睛】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.5、A【解析】将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线方程.【详解】曲线,即,当时,代入可得,所以切点坐标为,求得导函数可得,由导数几何意义可知,由点斜式可得切线方程为,即,故选:A.【点睛】本题考查了导数的几何意义,在曲线上一点的切线方程求法,属于基础题.6、B【解析】用空间四边形对进行判断;根据公理2对进
9、行判断;根据空间角的定义对进行判断;根据空间直线位置关系对进行判断.【详解】中,空间四边形的四条线段不共面,故错误.中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故正确.中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故错误.中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故错误.故选:B【点睛】本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.7、B【解析】根据题意可得易知,且,解方程可得,再利用即可求解.【详解】易知,且故有,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 陕西省 延安市 第一 中学 2023 年高 第三次 模拟考试 数学试卷 解析
限制150内