陕西省紫阳中学2023届高三第二次诊断性检测数学试卷含解析.doc
《陕西省紫阳中学2023届高三第二次诊断性检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省紫阳中学2023届高三第二次诊断性检测数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,在正方体中,已知、分别是线段上的点,且.则下列直线与平面平行的是( )ABCD2设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )A1
2、BCD3已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为( )ABCD4的展开式中的系数为( )ABCD5在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则( )A5BC4D166下列不等式成立的是( )ABCD7方程在区间内的所有解之和等于( )A4B6C8D108设,则,三数的大小关系是ABCD9在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是( )ABCD10已知定义在上函数的图象关于原点对称,且,若,则( )A0B1C673D67411已知正项等比数列中,存在两项,使得,则的最小值是( )ABCD12点为的
3、三条中线的交点,且,则的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13甲、乙、丙、丁四名同学报名参加淮南文明城市创建志愿服务活动,服务活动共有“走进社区”、“环境监测”、“爱心义演”、“交通宣传”等四个项目,每人限报其中一项,记事件为“4名同学所报项目各不相同”,事件为“只有甲同学一人报走进社区项目”,则的值为_.14为激发学生团结协作,敢于拼搏,不言放弃的精神,某校高三5个班进行班级间的拔河比赛每两班之间只比赛1场,目前()班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场则目前(五)班已经参加比赛的场次为_15设点P在函数的图象上,点Q在函数的
4、图象上,则线段PQ长度的最小值为_16某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二 人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)将棱长为的正方体截去三棱锥后得到如图所示几何体,为的中点.(1)求证:平面;(2)求二面角的正弦值.18(12分)如图,四棱锥的底面为直角梯形,底面,且,为的中点.(1)证明:;(2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积.19(12分)如图,在中,点在线段上.(1)若,求的长;(2)若,求的面积.20(12分)在中,
5、设、分别为角、的对边,记的面积为,且(1)求角的大小;(2)若,求的值21(12分)如图,在四棱锥中,底面是边长为2的菱形,.(1)证明:平面平面ABCD;(2)设H在AC上,若,求PH与平面PBC所成角的正弦值.22(10分)在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.(1)求曲线的普通方程和极坐标方程;(2)设直线与曲线交于两点,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】连接,使交于点,连接、,可
6、证四边形为平行四边形,可得,利用线面平行的判定定理即可得解【详解】如图,连接,使交于点,连接、,则为的中点,在正方体中,且,则四边形为平行四边形,且,、分别为、的中点,且,所以,四边形为平行四边形,则,平面,平面,因此,平面.故选:B.【点睛】本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题2、A【解析】设,因为,得到,利用直线的斜率公式,得到,结合基本不等式,即可求解.【详解】由题意,抛物线的焦点坐标为,设,因为,即线段的中点,所以,所以直线的斜率,当且仅当,即时等号成立,所以直线的斜率的最大值为1.故选:A.【点睛】本题主要考查了抛物线的方程及其应用,直线的斜率公
7、式,以及利用基本不等式求最值的应用,着重考查了推理与运算能力,属于中档试题.3、B【解析】根据三角函数定义得到,故,再利用和差公式得到答案.【详解】角的终边过点,.故选:.【点睛】本题考查了三角函数定义,和差公式,意在考查学生的计算能力.4、C【解析】由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代
8、入通项公式进行计算,从而问题可得解.5、C【解析】根据正弦定理边化角以及三角函数公式可得,再根据面积公式可求得,再代入余弦定理求解即可.【详解】中,由正弦定理得,又,又,又,.,由余弦定理可得,可得.故选:C【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.6、D【解析】根据指数函数、对数函数、幂函数的单调性和正余弦函数的图象可确定各个选项的正误.【详解】对于,错误;对于,在上单调递减,错误;对于,错误;对于,在上单调递增,正确.故选:.【点睛】本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性.7、C【解析】画出
9、函数和的图像,和均关于点中心对称,计算得到答案.【详解】,验证知不成立,故,画出函数和的图像,易知:和均关于点中心对称,图像共有8个交点,故所有解之和等于.故选:.【点睛】本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点中心对称是解题的关键.8、C【解析】利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【详解】由,所以有.选C.【点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.9、A【解析】根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 陕西省 紫阳 中学 2023 届高三 第二次 诊断 检测 数学试卷 解析
限制150内