陕西省西北农林科技大学附属中学2023年高三下学期联考数学试题含解析.doc
《陕西省西北农林科技大学附属中学2023年高三下学期联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《陕西省西北农林科技大学附属中学2023年高三下学期联考数学试题含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为( )A2BC6D82把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么
2、所得图象的一个对称中心为( )ABCD3设,则( )ABCD4已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为( )ABCD5某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为ABCD6函数的部分图象如图所示,则的单调递增区间为( )ABCD7复数满足,则( )ABCD8中国古典乐器一般按“八音”分类这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于周礼春官大师,分为“金、石、土、革、丝、木、匏(po)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器现从“八音
3、”中任取不同的“两音”,则含有打击乐器的概率为( )ABCD9如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,则( )A1BC2D310已知函数为奇函数,则( )AB1C2D311数列的通项公式为则“”是“为递增数列”的( )条件A必要而不充分B充要C充分而不必要D即不充分也不必要12已知函数,若函数有三个零点,则实数的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图所示,直角坐标系中网格小正方形的边长为1,若向量、满足,则实数的值为_ 14如图,四面体的一条棱长为,其余棱长均为1,记四面体的体积为,则函数的单调增区间是_;最大值为_.15下图是
4、一个算法的流程图,则输出的x的值为_16已知数列an的前n项和为Sn,向量(4,n),(Sn,n+3).若,则数列前2020项和为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,.(1)求抛物线的方程;(2)若,直线与交于点,求直线的斜率.18(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,
5、25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率19(12分)已知数列,其前项和为,若对于任意,且,都有.(1)求证:数列是等差数列(2)若数列满足,且
6、等差数列的公差为,存在正整数,使得,求的最小值.20(12分)已知曲线:和:(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)求曲线的直角坐标方程和的方程化为极坐标方程;(2)设与,轴交于,两点,且线段的中点为.若射线与,交于,两点,求,两点间的距离.21(12分)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180而成,如图2.已知圆的半径为,设,圆锥的侧面积为.(1)求关于的函数关系式;(2)为了达到最佳观
7、赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.22(10分)已知分别是椭圆的左、右焦点,直线与交于两点,且(1)求的方程;(2)已知点是上的任意一点,不经过原点的直线与交于两点,直线的斜率都存在,且,求的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果.【详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2,所以该四棱锥的体积为.故选A【点睛】本题主要考查几何的三视图,由几何
8、体的三视图先还原几何体,再由体积公式即可求解,属于常考题型.2、D【解析】试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.考点:三角函数的图象与性质.3、D【解析】结合指数函数及对数函数的单调性,可判断出,即可选出答案.【详解】由,即,又,即,即,所以.故选:D.【点睛】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.4、B【解析】由题可知,再结合双曲线第一定义,可得,对有,即,解得,再对,由勾股定理可得,化简即可求解【详解】如图,因为,所以.因为所以.在中,即
9、,得,则.在中,由得.故选:B【点睛】本题考查双曲线的离心率求法,几何性质的应用,属于中档题5、C【解析】由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C6、D【解析】由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可.【详解】由图象知,所以,又图象过点,所以,故可取,所以令,解得所以函数的单调递增区间为故选:【点睛】本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题.7、C【解析】利用复数模与除法运算即可得到结果.【详解】解: ,故选:C【点睛】本题考查复数除法运算,考查复数的模,考查计
10、算能力,属于基础题.8、B【解析】分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【详解】从“八音”中任取不同的“两音”共有种取法;“两音”中含有打击乐器的取法共有种取法;所求概率.故选:.【点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.9、C【解析】连接AO,因为O为BC中点,可由平行四边形法则得,再将其用,表示.由M、O、N三点共线可知,其表达式中的系数和,即可求出的值.【详解】连接AO,由O为BC中点可得,、三点共线,.故选:C. 【点睛】本题考查了向量的线性运算,由三点共线求参数的问题,熟记向量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 陕西省 西北农林 科技大学 附属中学 2023 年高 下学 联考 数学试题 解析
限制150内