陕西省汉中市部分高中2022-2023学年高三第三次测评数学试卷含解析.doc
《陕西省汉中市部分高中2022-2023学年高三第三次测评数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省汉中市部分高中2022-2023学年高三第三次测评数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1执行如图所示的程序框图,则输出的值为( )ABCD2已知函数,方程有四个不同的根,记最大的根的所有取值
2、为集合,则“函数有两个零点”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为( )ABCD4如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角余弦值为( )ABCD5在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则( )ABCD6已知函数,则( )A函数在上单调递增B函数在上单调递减C函数图像关于对称D函数图像关于对称7已知圆关于双曲线的一条渐近线对称,则双曲线的离心率为( )ABCD8已知四棱锥中,平面,底面是
3、边长为2的正方形,为的中点,则异面直线与所成角的余弦值为( )ABCD9设,是双曲线的左,右焦点,是坐标原点,过点作的一条渐近线的垂线,垂足为若,则的离心率为( )ABCD10复数(为虚数单位),则等于( )A3BC2D11在直角梯形中,点为上一点,且,当的值最大时,( )AB2CD12设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )A1BCD二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系中,点在单位圆上,设,且若,则的值为_.14若实数满足不等式组则目标函数的最大值为_15在ABC中,()(1),若角A的最大值为,则实数的值是_
4、16如图,在复平面内,复数,对应的向量分别是,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知分别是椭圆的左、右焦点,直线与交于两点,且(1)求的方程;(2)已知点是上的任意一点,不经过原点的直线与交于两点,直线的斜率都存在,且,求的值18(12分)在平面直角坐标系xOy中,曲线C1的参数方程为 (为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心为(2,),半径为1的圆(1)求曲线C1的普通方程和C2的直角坐标方程;(2)设M为曲线C1上的点,N为曲线C2上的点,求|MN|的取值范围19(12分)数列满足,是与的等差中项.(1)证明:
5、数列为等比数列,并求数列的通项公式;(2)求数列的前项和.20(12分)已知函数.()解不等式;()设其中为常数.若方程在上恰有两个不相等的实数根,求实数的取值范围.21(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线极坐标方程为.若直线交曲线于,两点,求线段的长.22(10分)如图,三棱柱的所有棱长均相等,在底面上的投影在棱上,且平面()证明:平面平面;()求直线与平面所成角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】列出每一次循环,直到计数变量
6、满足退出循环.【详解】第一次循环:;第二次循环:;第三次循环:,退出循环,输出的为.故选:B.【点睛】本题考查由程序框图求输出的结果,要注意在哪一步退出循环,是一道容易题.2、A【解析】作出函数的图象,得到,把函数有零点转化为与在(2,4上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断【详解】作出函数的图象如图,由图可知,函数有2个零点,即有两个不同的根,也就是与在上有2个交点,则的最小值为;设过原点的直线与的切点为,斜率为,则切线方程为,把代入,可得,即,切线斜率为,k的取值范围是,函数有两个零点”是“”的充分不必要条件,故选A【点睛】本题主要考查了函数
7、零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题3、D【解析】先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值范围.【详解】由题设有,故,故椭圆,因为点为上的任意一点,故.又,因为,故,所以.故选:D.【点睛】本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题.4、C【解析】利用建系,假设长度,表示向量与,利用向量的夹角公式,可得结果.【详解】由平面平面,平面平面,平面所以平面,又平面所以,
8、又所以作轴/,建立空间直角坐标系如图设,所以则所以所以故选:C【点睛】本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.5、B【解析】设,则,由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.【详解】设,则,因为B,P,D三点共线,C,P,E三点共线,所以,所以,.故选:B.【点睛】本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.6、C【解析】依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;【详解】解:由,所以函数图像关于对称
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 陕西省 汉中市 部分 高中 2022 2023 学年 第三次 测评 数学试卷 解析
限制150内