黑龙江省绥化地区达标名校2022-2023学年中考押题数学预测卷含解析.doc
《黑龙江省绥化地区达标名校2022-2023学年中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《黑龙江省绥化地区达标名校2022-2023学年中考押题数学预测卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()Ay=2n+1By=2n+nCy=2n+1+nDy=2n+n+12如图,ABCD,AD与BC相交于点O,若A=5010,COD=100,则C等于()
2、A3010B2910C2950D50103如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A16cmB20cmC24cmD28cm4如图,两个反比例函数y1(其中k10)和y2在第一象限内的图象依次是C1和C2,点P在C1上矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EFx轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A:1B2:C2:1D29:145甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正
3、确的是A B C D6如图,在平面直角坐标系中RtABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,ABC=30,把RtABC先绕B点顺时针旋转180,然后再向下平移2个单位,则A点的对应点A的坐标为()A(4,2)B(4,2+)C(2,2+)D(2,2)7一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是( )A120元B125元C135元D140元8如图,二次函数y=ax2+bx+c(a0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:AB=
4、4;b2-4ac0;ab0;a2-ab+ac0,其中正确的结论有()个A3B4C2D19某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A B C D10下列运算中,正确的是()A(ab2)2=a2b4 Ba2+a2=2a4 Ca2a3=a6 Da6a3=a2二、填空题(本大题共6个小题,每小题3分,共18分)11如图,抛物线交轴于,两点,交轴于点,点关于抛物线的对称轴的对称点为,点,分别在轴和轴上,则四边形周长的最小值为_12如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是_ 13一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_14如图
5、,在等边ABC中,AB=4,D是BC的中点,将ABD绕点A旋转后得到ACE,连接DE交AC于点F,则AEF的面积为_15如图,在ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若SAPD16cm1,SBQC15cm1,则图中阴影部分的面积为_cm116如图,在四边形ABCD中,AC、BD是对角线,AC=AD,BCAB,ABCD,AB=4,BD=2,tanBAC=3,则线段BC的长是_三、解答题(共8题,共72分)17(8分)已知RtABC中,ACB90,CACB4,另有一块等腰直角三角板的直角顶点放在C处,CPCQ2,将三角板CPQ绕点C旋转(保持点P在
6、ABC内部),连接AP、BP、BQ如图1求证:APBQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系18(8分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PAy轴于点A,点P绕点A顺时针旋转60得到点P,我们称点P是点P的“旋转对应点”(1)若点P(4,2),则点P的“旋转对应点”P的坐标为 ;若点P的“旋转对应点”P的坐标为(5,16)则点P的坐标为 ;若点P(a,b),则点P的“旋转对应点”P的坐标为 ;(2)如图2,点Q是线段AP上的一点(不与A、P重合),点Q的
7、“旋转对应点”是点Q,连接PP、QQ,求证:PPQQ;(3)点P与它的“旋转对应点”P的连线所在的直线经过点(,6),求直线PP与x轴的交点坐标19(8分)如图,抛物线y=x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y轴交于点C(0,3)(1)求抛物线的解析式;(2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在OBC内(包括OBC的边界),求h的取值范围;(3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=3上,PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由20(8分)小强想知道湖中两个小
8、亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30,亭B在点M的北偏东60,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.21(8分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图ABC笔试859590口试 8085(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为 度;竞选的最后一个
9、程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为 ;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选(从A、B、C、选择一个填空)22(10分)如图,已知:AD 和 BC 相交于点 O,A=C,AO=2,BO=4,OC=3,求 OD 的长23(12分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(6,0)和点B(4,0),与y轴的交点为C(0,3)(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A
10、重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上是否同时存在点D和点P,使得APQ和CDO全等,若存在,求点D的坐标,若不存在,请说明理由;若DCB=CDB,CD是MN的垂直平分线,求点M的坐标24某校有3000名学生为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图种类ABCDEF上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:参与本次
11、问卷调查的学生共有_人,其中选择B类的人数有_人在扇形统计图中,求E类对应的扇形圆心角的度数,并补全条形统计图若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】观察可知:左边三角形的数字规律为:1,2,n,右边三角形的数字规律为:2,下边三角形的数字规律为:1+2,最后一个三角形中y与n之间的关系式是y=2n+n.故选B【点睛】考点:规律型:数字的变化类2、C【解析】根据平行线性质求出D,根据三角形的内角和定理得出C=180-D-COD,代入求出即可【详解】ABCD,D=A=5010,COD
12、=100,C=180-D-COD=2950.故选C.【点睛】本题考查了三角形的内角和定理和平行线的性质的应用,关键是求出D的度数和得出C=180-D-COD应该掌握的是三角形的内角和为180.3、C【解析】首先根据平行线的性质以及折叠的性质证明EAC=DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角ADF中利用勾股定理求解【详解】长方形ABCD中,ABCD,BAC=DCA,又BAC=EAC,EAC=DCA,FC=AF=25cm,又长方形ABCD中,DC=AB=32cm,DF=DC-FC=32-25=7cm,在直角ADF中,AD=24(cm)故选C【点睛】本题考查了折叠的性质以及
13、勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键4、A【解析】试题分析:首先根据反比例函数y2=的解析式可得到=3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出EOF的面积,可以得到AOC与EOF的面积比,然后证明EOFAOC,根据对应边之比等于面积比的平方可得到EFAC=故选A考点:反比例函数系数k的几何意义5、A【解析】分析:甲队每天修路xm,则乙队每天修(x10)m,因为甲、乙两队所用的天数相同,所以,。故选A。6、D【解析】解:作ADBC,并作出把RtABC先绕B点顺时针旋转180后所得A1BC1,如图所示AC=2,ABC=10,BC=4,AB
14、=2,AD=,BD=1点B坐标为(1,0),A点的坐标为(4,)BD=1,BD1=1,D1坐标为(2,0),A1坐标为(2,)再向下平移2个单位,A的坐标为(2,2)故选D点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键7、B【解析】试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)80%解这个方程得:x=125则这种服装每件的成本是125元故选B考点:一
15、元一次方程的应用8、A【解析】利用抛物线的对称性可确定A点坐标为(-3,0),则可对进行判断;利用判别式的意义和抛物线与x轴有2个交点可对进行判断;由抛物线开口向下得到a0,再利用对称轴方程得到b=2a0,则可对进行判断;利用x=-1时,y0,即a-b+c0和a0可对进行判断【详解】抛物线的对称轴为直线x=-1,点B的坐标为(1,0),A(-3,0),AB=1-(-3)=4,所以正确;抛物线与x轴有2个交点,=b2-4ac0,所以正确;抛物线开口向下,a0,抛物线的对称轴为直线x=-=-1,b=2a0,ab0,所以错误;x=-1时,y0,a-b+c0,而a0,a(a-b+c)0,所以正确故选A
16、【点睛】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a0),=b2-4ac决定抛物线与x轴的交点个数:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点也考查了二次函数的性质9、B【解析】从几何体的正面看可得下图,故选B10、A【解析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2a3=a5,故此选项错误;D、a6a3=a3,故此选项错误;故
17、选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D(1,4)、作点E关于x轴的对称点E(2,3),从而得到四边形EDFG的周长DEDFFGGEDEDFFGGE,当点D、F、G、E四点共线时,周长最短,据此根据勾股定理可得答案.【详解】如图,在yx22x3中,当x0时,y3,即点C(0,3),yx22x3(x1)24,对称轴为x1,顶点D(1,4),则点C关于对称轴的对称点E的坐标为(2,3),作点D关
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 黑龙江省 绥化 地区 达标 名校 2022 2023 学年 中考 押题 数学 预测 解析
限制150内