小波变换在图像融合中的应用(共7页).doc





《小波变换在图像融合中的应用(共7页).doc》由会员分享,可在线阅读,更多相关《小波变换在图像融合中的应用(共7页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上小波变换在图像融合中的应用摘要:图像融合是将同一对象的两个或更多图像合成一幅图像,使得融合后图像更容易理解,而小波变换为其提供了良好的融合方法。本文主要讲述了基于小波变换的图像融合的基本原理和具体融合步骤,以及低频和高频的融合规则,并利用二维小波与小波分解进行了简单的图像融合的MATLAB仿真。关键词:图像融合;小波变换;融合方法;MATLAB仿真1、 引言在众多的图像融合技术中,基于小波变换的图像融合方法已成为现今研究的一个热点。图像融合是将不同来源的同一对象的图像数据进行空间配准,然后采用一定的算法将各个图像数据中所含有的信息优势或互补性有机地结合起来,产生新的图
2、像数据的信息技术。高效的图像融合方法可以根据需要综合处理多源通道的信息,从而有效的提高了图像信息的利用率和系统对目标探测识别的可靠性。其目的是将单一传感器的多波段信息或不同类传感器所提供的信息加以综合,以增强影像中信息解译的精度、可靠性以及使用率,以形成对目标的清晰、完整、准确的信息描述。图像融合可分为三个层次:(1)低水平的像素级融合;(2)中等水平的特征级融合;(3)高水平的决策级融合。图像融合的方法主要分为基于空域的图像融合和基于变换域的图像融合,其中变换域方法主要有基于多分辨率金字塔融合法、基于傅里叶变换的图像融合法、基于小波变换的图像融合法。20世纪80年代中期发展起来的小波变换技术
3、为图像融合提供了新的工具,小波分解的紧支性、对称性和正交性赋与它良好的图像融合性能。基于小波分析的图像融合是近年来国内外一个活跃的研究领域,二维小波分析用于图像融合是小波分析应用的一个重要方面,基于小波变换的图像融合能取得良好的结果,使图像融合成为小波理论最成功的应用领域之一1。2、 小波分析与图像融合2.1 小波变换实现图像融合的基本原理小波变换作为一种数学工具,它是介于函数的时间域(或空间域)表示和频率表示之间的一种表示方式。它在时间域和频率域上同时具有良好的局部化性质,对高频成分采用逐步精细的时间域(空间域)取样步长,可以“聚焦”到对象的任意细节,从而被誉为“数学显微镜”。它能够将一个信
4、号分解成信号对空间和时间的独立部分,同时又不丢失原信号所包含的信息,并且可以找到正交基,实现无冗余的信号分解2。对于图像融合,有时在频率域进行比在时间域进行更为有效。融合算法的设计,应把融合的技术目的与图像的频率表现结合起来进行考虑。传统的融合方法多是在时间域对图像进行算术运算,未对相应频率域变化进行考虑。如果充分考虑时间域和频率域的互动关系,融合的效果也许会更好。小波变换由于具有“数学显微镜”聚焦的功能,因而能实现时间域和频率域的步调统一,而且能把频率域进行正交分解。因此,小波变换在图像融合中的作用越来越大。图像经二维小波变换分解之后,分别得到图像的低频分量,水平高频分量,垂直高频分量和对角
5、高频分量,其中高频分量是图像的细节部分。图像数据融合的基本思想是先对多源图像进行二维小波分解,然后在小波变换域内通过比较各图像的细节信息或所有信息,在不同尺度上实现融合,提取重要的小波系数,最后再进行小波逆变换,便可得到数据融合之后的图像,原理图如下图11,3。图1 基于小波变换的图像融合的原理图2.2 基于小波变换的图像融合的步骤 小波变换本质是一种高通滤波,采用不同的小波基就会产生不同的滤波效果。小波变换可以将原始图像分解成一系列具有不同空间分辨率和频域特性的子图像,针对不同频带子图像的小波系数进行组合,形成融合图像的小波系数。基于小波变换的图像融合的具体步骤如下,其流程图如图2。(1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 变换 图像 融合 中的 应用

限制150内