多元函数的基本概念极限和连续性.ppt
《多元函数的基本概念极限和连续性.ppt》由会员分享,可在线阅读,更多相关《多元函数的基本概念极限和连续性.ppt(53页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、多元函数的基本概念极限和连续性一、一、区域区域1.邻域邻域点集点集称为点称为点 P0 的的 邻域邻域.例如例如,在平面上在平面上,(圆邻域圆邻域)在空间中在空间中,(球邻域球邻域)说明:说明:若不需要强调邻域半径若不需要强调邻域半径 ,也可写成也可写成点点 P0 的的去心邻域去心邻域记为记为例如例如边界上的点都是聚点也都属于集合边界上的点都是聚点也都属于集合例如例如(0,0)(0,0)既是既是边界点也是聚点但不属于集边界点也是聚点但不属于集合合D(3)开区域及闭区域开区域及闭区域 若点集若点集 E 的点都是的点都是内点内点,则称,则称 E 为为开集开集;若点集若点集 E E,则称则称 E 为为
2、闭集闭集;若集若集 D 中任意两点都可用一完全属于中任意两点都可用一完全属于 D 的折线相连的折线相连,开区域连同它的边界一起称为开区域连同它的边界一起称为闭区域闭区域.则称则称 D 是连通的是连通的;连通的开集称为连通的开集称为开区域开区域,简称简称区域区域;E 的边界点的全体称为的边界点的全体称为 E 的的边界边界,记作记作 E;例如,例如,在平面上在平面上开区域开区域闭区域闭区域 整个平面整个平面 点集点集 是开集,是开集,是最大的开域是最大的开域,也是最大的闭域也是最大的闭域;但非区域但非区域.对区域对区域 D,若存在正数若存在正数 K,使一切点使一切点 P D 与某定点与某定点 A
3、的距离的距离 AP K,则称则称 D 为为有界域有界域,界域界域.否则称为否则称为无无(4)n维空间维空间 n维空间的记号为维空间的记号为说明:说明:说明:说明:n维空间中两点间距离公式维空间中两点间距离公式 n维空间中邻域、区域等概念维空间中邻域、区域等概念 特殊地当特殊地当 时,便为数轴、平面、时,便为数轴、平面、空间两点间的距离空间两点间的距离内点、边界点、区域、聚点等概念也可定义内点、边界点、区域、聚点等概念也可定义邻域:邻域:设两点为设两点为二二、二元函数的定义、二元函数的定义类似地可定义三元及三元以上函数类似地可定义三元及三元以上函数例例1 1 求求 的定义域的定义域解解所求定义域
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 函数 基本概念 极限 连续性
限制150内