第二讲线性规划基础精选PPT.ppt
《第二讲线性规划基础精选PPT.ppt》由会员分享,可在线阅读,更多相关《第二讲线性规划基础精选PPT.ppt(47页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二讲线性规划基础2023/4/221第1页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础一一.线性规划的提出与模型线性规划的提出与模型 二二.线性规划的图解线性规划的图解 三三.线性规划标准型与解的概念线性规划标准型与解的概念四四.线性规划的基本理论线性规划的基本理论第2页,本讲稿共47页一、线性规划的提出与模型一、线性规划的提出与模型1、问题的提出第二讲第二讲 线性规划基础线性规划基础例1-1:某工厂在计划期内要安排生产甲、乙两种产品,按照工艺要求,产品甲、乙在设备A、B上所需的加工台时及原材料的消耗如表1-1所示。资源产品原材料/单位设备A/h设备B/h单件利润/千元甲1403乙
2、2044资源数量81612表1-1 例1-1数据资料第3页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础一、线性规划的提出与模型一、线性规划的提出与模型1、问题的提出续例1-1:问:应如何安排生产计划才能到最大利润?用数学关系式描述这个问题用数学关系式描述这个问题假设 ,分别表示在计划期内产品甲、乙的产量;生产 ,的数量多少,受到各种条件限制;生产的产品数量不能为负值生产的产品数量不能为负值,即 ;问:如何安排生产,使利润最大?决策变量决策变量约束条件约束条件目标函数目标函数 资源产品原材料/单位设备A/h设备B/h单件利润/千元甲1403乙2044资源数量81612第4页,本讲稿共4
3、7页第二讲第二讲 线性规划基础线性规划基础一、线性规划的提出与模型一、线性规划的提出与模型1、问题的提出得到本问题的数学模型为:这就是一个最简单的线性规划模型。这就是一个最简单的线性规划模型。第5页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础一、线性规划的提出与模型一、线性规划的提出与模型练习题 练习题练习题1 靠近某河流有两个化工厂靠近某河流有两个化工厂(见图见图1-1),流经第一化工厂的河流,流经第一化工厂的河流流量为每天流量为每天500万立方米,在两个万立方米,在两个工厂之间有一条流量为每天工厂之间有一条流量为每天200万万立方米的支流。立方米的支流。化工厂化工厂1每天排放含有
4、某种有害物质的工业污水每天排放含有某种有害物质的工业污水2万立方米,化工厂万立方米,化工厂2每天排放的工业每天排放的工业污水为污水为1.4万立方米。从化工厂万立方米。从化工厂1排出的污水流到化工厂排出的污水流到化工厂2前,有前,有20%可自然净化。根据可自然净化。根据环保要求,河流中工业污水的含量应不大于环保要求,河流中工业污水的含量应不大于0.2%。因此两个工厂都需处理一。因此两个工厂都需处理一部分工业污水。化工厂部分工业污水。化工厂1处理污水的成本是处理污水的成本是1000元元/万立方米万立方米,化工厂化工厂2处理污水处理污水的成本是的成本是800元元/万立方米万立方米。问。问:在满足环保
5、要求的条件下,每厂各应处理多少工业污水,在满足环保要求的条件下,每厂各应处理多少工业污水,使两个工厂处理工业污水的总费用最小。使两个工厂处理工业污水的总费用最小。图1-1第6页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础一、线性规划的提出与模型一、线性规划的提出与模型练习题1建模型之前的分析和计算设设:化工厂1每天处理的污水量为x1万立方米;化工厂2每天处理的污水量为x2万立方米第7页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础一、线性规划的提出与模型一、线性规划的提出与模型练习题1得到本问题的数学模型为:第8页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础一、线性
6、规划的提出与模型一、线性规划的提出与模型练习题2 练习题练习题2 某昼夜服务的公交线路每天各时间段内所需司机和某昼夜服务的公交线路每天各时间段内所需司机和乘务人员数如表乘务人员数如表1-21-2所示。设司乘人员在各时间段一开始时上所示。设司乘人员在各时间段一开始时上班,并连续工作班,并连续工作8 8小时,问该公交线路怎样安排司乘人员,既小时,问该公交线路怎样安排司乘人员,既能满足工作需要,又配备最少的司机和乘务人员?试列出该问能满足工作需要,又配备最少的司机和乘务人员?试列出该问题的线性规划模型。题的线性规划模型。班次时间所需人数班次时间所需人数16:00-10:0060418:00-22:0
7、050210:00-14:0070522:00-2:0020314:00-18:006062:00-6:0030表1-2 练习题2数据资料第9页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础一、线性规划的提出与模型一、线性规划的提出与模型2、线性规划的一般数学模型一般线性规划数学模型有三个要素:一般线性规划数学模型有三个要素:(1 1)决策变量集合:)决策变量集合:,通常要求非负;,通常要求非负;(2 2)约束条件集合,决策变量集的一组线性等式或不等式;)约束条件集合,决策变量集的一组线性等式或不等式;(3 3)目标函数:)目标函数:,通常求最大值或最小值。,通常求最大值或最小值。第1
8、0页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础一、线性规划的提出与模型一、线性规划的提出与模型2、线性规划的一般数学模型线性规划模型的一般形式为:线性规划模型的一般形式为:第11页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础一、线性规划的提出与模型一、线性规划的提出与模型2、线性规划的一般数学模型决策变量及各类系数之间的对应关系:决策变量及各类系数之间的对应关系:第12页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础一、线性规划的提出与模型一、线性规划的提出与模型总结:总结:线性规划是求一个线性函数在满足一组线性等式或不等式方程条件下极值的数学问题的统称。其组成部
9、分:其组成部分:1、一个反映决策目标的目标函数;2、一组线性等式或不等式的约束方程;3、限制决策变量取值范围的非负约束。第13页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础二、线性规划的图解法二、线性规划的图解法例1是一个二维线性规划问题,因而可用作图法直观地进行求解。第14页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础二、线性规划的图解法二、线性规划的图解法目标值在(目标值在(4 4,2 2)点,达到最大值)点,达到最大值1414第15页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础二、线性规划的图解法二、线性规划的图解法几种特殊情况:几种特殊情况:(1)无穷多最
10、优解:)无穷多最优解:max z=2x1+4x2 将目标函数改为:将目标函数改为:max z=2x max z=2x1 1+4x+4x2 2 当目标方程直线与某一约束直线平行时,最优值不唯一当目标方程直线与某一约束直线平行时,最优值不唯一!第16页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础二、线性规划的图解法二、线性规划的图解法几种特殊情况:几种特殊情况:(2)无界解:有可行域,但无最优解;)无界解:有可行域,但无最优解;第17页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础二、线性规划的图解法二、线性规划的图解法几种特殊情况:几种特殊情况:(3)无可行解:无可行域;)无可
11、行解:无可行域;当存在相互矛盾的约束条件时,线性规划问题的可行域为空集。当存在相互矛盾的约束条件时,线性规划问题的可行域为空集。例如,如果在例例如,如果在例1的数学模型中增加一个约束条件的数学模型中增加一个约束条件:思考:会出现什么结果?思考:会出现什么结果?第18页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础二、线性规划的图解法二、线性规划的图解法(3)无可行解:无可行域;)无可行解:无可行域;增加的约束条件结论:该问题的可行域为空集,即无可行解,结论:该问题的可行域为空集,即无可行解,第19页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础二、线性规划的图解法二、线性规划的
12、图解法结论:结论:1、当线性规划问题的可行域非空时,它是有界或无界凸多边形;2、若线性规划问题存在最优解,它一定在有界可行域的某个顶点得到。推广:无穷多最优解的情况?推广:无穷多最优解的情况?思考:图解法给人们的启示是什么?思考:图解法给人们的启示是什么?第20页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础三、线性规划标准型与解的概念三、线性规划标准型与解的概念1、线性规划的标准型第21页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础三、线性规划标准型与解的概念三、线性规划标准型与解的概念1、线性规划的标准型用向量形式表示的标准形式线性规划:用向量形式表示的标准形式线性规划:
13、第22页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础三、线性规划标准型与解的概念三、线性规划标准型与解的概念1、线性规划的标准型用矩阵形式表示的标准形式线性规划:用矩阵形式表示的标准形式线性规划:第23页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础三、线性规划标准型与解的概念三、线性规划标准型与解的概念2、化一般模型为标准模型(1)若要求目标函数实现最小化,即min min z z=CXCX,则只需将目标函数最小化变换求目标函数最大化,即令z z=z z,于是得到max max z z=CXCX。(2)(2)约束条件为不等式。分两种情况讨论:约束条件为不等式。分两种情况讨论
14、:若约束条件为若约束条件为“”型不等式,则可在不等式左端加入非负松弛变量,把型不等式,则可在不等式左端加入非负松弛变量,把原原“”型不等式变为等式约束;型不等式变为等式约束;(3)(3)若存在取值无约束的变量若存在取值无约束的变量x xk k,可令可令:若约束条件为若约束条件为“”型不等式,则可在不等式左端减去一个非负剩余变量型不等式,则可在不等式左端减去一个非负剩余变量(也称松弛变量也称松弛变量),把不等式约束条件变为等式约束。,把不等式约束条件变为等式约束。第24页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础三、线性规划标准型与解的概念三、线性规划标准型与解的概念2、化一般模型为
15、标准模型练习题:练习题:例例3 将例将例1的数学模型化为标准形式的线性规划。的数学模型化为标准形式的线性规划。第25页,本讲稿共47页第二讲第二讲 线性规划基础线性规划基础三、线性规划标准型与解的概念三、线性规划标准型与解的概念2、化一般模型为标准模型练习题:练习题:(1)(1)用用x x4 4 x x5 5替替换换x x3 3,其其中中x x4 4,x x5 500;(2)(2)在第一个约束不等式左端加入在第一个约束不等式左端加入松弛变量松弛变量x x6 6;(3)(3)在第二个约束不等式左端减去在第二个约束不等式左端减去剩余变量剩余变量x x7 7;(4)(4)令令z z=z z,将求,将
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 线性规划 基础 精选 PPT
限制150内