《现金流量计算应用.pptx》由会员分享,可在线阅读,更多相关《现金流量计算应用.pptx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、计算债券的价值和收益率一、计算债券的价值和收益率第1页/共27页计算债券的内在价值计算债券的内在价值n债券市场上,某一面值债券市场上,某一面值100元的元的5年期债券,年期债券,债券债券4年后到期,可取得年后到期,可取得4次利息收入,每次次利息收入,每次利息收入利息收入8元,投资者要求的持有期收益率元,投资者要求的持有期收益率(必要收益率)为(必要收益率)为9%,请问这一债券的内在,请问这一债券的内在价值是多少?价值是多少?n解:内在价值解:内在价值Pn从现金流上看,这是一个求现值的问题从现金流上看,这是一个求现值的问题n用财务计算器求解用财务计算器求解 PV(i=9%,N=4,PMT=8
2、,FV=100)n用用Excel函数,债券价值函数,债券价值P=PV(9%,4,8,100,0)=-96.76元元第2页/共27页计算债券的持有期收益率计算债券的持有期收益率n一投资者以一投资者以95元买入面值元买入面值100元的元的5年期债券,债年期债券,债券券4年后到期,可取得年后到期,可取得4次利息收入,每次利息收次利息收入,每次利息收入入8元,请问这一债券的持有期收益率是多少?元,请问这一债券的持有期收益率是多少?n解:假设持有期收益率为解:假设持有期收益率为 r,可得等式,可得等式n可用可用Excel的规划求解(或单变量求解),来解上述的规划求解(或单变量求解),来解上述方程,解得方
3、程,解得 r=9.56%n从现金流上看,这是一个求利率的问题从现金流上看,这是一个求利率的问题n用财务计算器求解用财务计算器求解,Rate(N=4,PMT=8,FV=100,PV=-95)n用用Excel函数,持有期收益率函数,持有期收益率r=Rate(4,8,-95,100,0,)=9.56%第3页/共27页n股票收益率股票收益率i内含于下列等式中:内含于下列等式中:其中:其中:P为股票的购买价格为股票的购买价格 F为股票的出售价格为股票的出售价格 Dt为各期获得的股利(假设在每期期末发放)为各期获得的股利(假设在每期期末发放)n为投资期限为投资期限二、计算股票的的价值和收益率二、计算股票的
4、的价值和收益率第4页/共27页n考虑股息的时间价值,假设股票收益率为考虑股息的时间价值,假设股票收益率为i股票的收益率股票的收益率n用用Excel的规划求解,解得的规划求解,解得 i=16.67%第5页/共27页n相对估值法相对估值法n采用乘数方法,利用企业采用乘数方法,利用企业每股利润每股利润(或每股净资产),(或每股净资产),根据预测的企业根据预测的企业市盈率市盈率(或市净率),估测企业的价(或市净率),估测企业的价值值n绝对估值法n股票的价值等于未来可获得股息(和卖出价)的贴现股票的价值等于未来可获得股息(和卖出价)的贴现值之和值之和n1、股票估价基本模型、股票估价基本模型n2、零成长股
5、票估价模型、零成长股票估价模型n3、固定成长股票估价模型、固定成长股票估价模型n4、非固定成长股票估价模型、非固定成长股票估价模型股票的估价方法股票的估价方法第6页/共27页1、股票估价基本模型n假定股东永远持有股票,则只获得股利,也即一个永续的现金流入。n这个现金流入的现值,就是股票的价值,用V表示:n式中:Dt 第t年的股利n R 每期折现率,即股东的必要收益率n T 折现期数第7页/共27页2、零成长股票估价模型n假设未来股利固定不变,则股息支付过程是一个永续年金,股票价值P=DRS n例子:n某股票每年分配股利2元,永续不变,股东要求的必要报酬率为16n则股票价值P=216=12.5(
6、元)n注意:市场上的股价不一定等于股票价值,股价不一定就是12.5元第8页/共27页3、固定成长股票估价模型n固定成长股票的股价计算公式,g为股息增长率n当R g时,上式可简化为:第9页/共27页例子nABC公司股东必要报酬率为16,预计公司盈利年增长率都为12,目前的每股股利D0=2元。n则第一期期末的股利 D1=2(1+12%)=21.12=2.24元n股票的内在价值为:P=2.24(16%-12%)=56 元 第10页/共27页4、非固定成长股票估价模型 n公司股利的不固定n例如,在一段时间里高速增长,在另一段时间里正常固定增长或固定不变n在这种情况下,要计算股票每段时间(或每年)现金流
7、的现值n例子n一个投资人持有ABC公司的股票,他的投资必要报酬率为15。公司最近一期支付的股利是2元。n预计ABC公司未来3年股利将高速增长,增长率为20;在此以后转为正常增长,增长率为12。n请计算该公司股票的内在价值。第11页/共27页例题解答 n(1)高速增长期股利的现值n(2)正常增长期股利的现值 其现值=129.02(P/F,15,3)=129.020.6575=84.831(元)n(3)股票总的内在价值=6.539+84.831=91.37第12页/共27页小胡现有存款小胡现有存款10万元,准备万元,准备5年后购买一套年后购买一套价值价值160万元的住房,首付万元的住房,首付60万
8、。他的年投万。他的年投资收益率为资收益率为4%。请问,为筹集首付款,小胡请问,为筹集首付款,小胡5年内每年年末年内每年年末应定期定额投资多少钱?应定期定额投资多少钱?三、购房首付款的筹资计划三、购房首付款的筹资计划第13页/共27页解答解答n公式计算方法公式计算方法n共六笔现金流,可看成一笔现金流和一个年金之和共六笔现金流,可看成一笔现金流和一个年金之和n60万万=10万万(F/P,4%,5)+A(F/A,4%,5)n也即也即 60万万=10万万1.2167+A5.42n解方程得解方程得 A=(60万万-10万万1.2167)5.42=8.83万元万元nExcel函数计算方法函数计算方法n年金
9、每期支付函数:年金每期支付函数:PMT(Rate,Nper,Pv,Fv,Type)nA=PMT(4%,5,-100000,600000,0)=-8.83万元万元n财务计算器财务计算器A012345AAAA-10万60万第14页/共27页四、住房贷款的偿还四、住房贷款的偿还n王先生为买房准备贷款王先生为买房准备贷款100万元,贷款年利率万元,贷款年利率6%,10年还清,年还清,等额本息还款,他需要每月偿还多少住房贷款?等额本息还款,他需要每月偿还多少住房贷款?n假设王先生偿还住房贷款假设王先生偿还住房贷款6年后,准备将剩余的贷款一次性年后,准备将剩余的贷款一次性还清,他应一次性偿还多少钱(还清,
10、他应一次性偿还多少钱(6年后的贷款余额是多少)年后的贷款余额是多少)?n答案:答案:n住房贷款年利率住房贷款年利率6%,月利率,月利率=6%12=0.5%,共还款,共还款10年,年,也即也即120期期n每月还款额每月还款额=1000000(P/A,0.5%,120)=11102元,或元,或=PMT(0.5%,120,1000000,0,)=-11102元元n6年后应一次性还款(年后应一次性还款(6年后的贷款余额)年后的贷款余额)=11102(P/A,0.5%,48)=574257元,或元,或=PV(0.5%,12*4,11102,0,)=-472726.69元元第15页/共27页住房贷款偿还方
11、式住房贷款偿还方式n(一)到期一次还本付息(一)到期一次还本付息n贷款到期后一次性归还全部本金和利息贷款到期后一次性归还全部本金和利息n短期(一年期)个人住房贷款一般用这种方式短期(一年期)个人住房贷款一般用这种方式n(二)等额本金还款(二)等额本金还款n每次还款,每次还款,偿还的本金相等偿还的本金相等,同时付清当期应付的利息,同时付清当期应付的利息n每月还款额每月还款额 =当期偿还本金当期偿还本金+当期偿还利息当期偿还利息 =贷款本金贷款本金还款期数还款期数+(贷款本金(贷款本金-累积已还本金)累积已还本金)当期利率当期利率n期初还款负担重,适合有一定储蓄、收入逐渐减少的家庭,如中老期初还款
12、负担重,适合有一定储蓄、收入逐渐减少的家庭,如中老年家庭年家庭n(三)等额本息还款,等额还款法(最常见)(三)等额本息还款,等额还款法(最常见)n每次还款的每次还款的金额(本金加利息)相等金额(本金加利息)相等,现金流相当于一个年金,现金流相当于一个年金n贷款本金贷款本金=每月还款额每月还款额年金现值系数(年金现值系数(P/A,i,n)n(四)其它方法(四)其它方法n等比累进还款法,每次还款比例增加等比累进还款法,每次还款比例增加n等额累进还款法,每次还款金额增加等额累进还款法,每次还款金额增加第16页/共27页五、可负担五、可负担购房总价购房总价的估算的估算n可负担购房总价可负担购房总价=可
13、负担的购房首付款可负担的购房首付款+可负担的购房贷款可负担的购房贷款n可负担的购房首付款可负担的购房首付款 =目前可用于购房的资产终值目前可用于购房的资产终值+每年可供购房的储每年可供购房的储蓄终值蓄终值 =目前可用于购房的资产目前可用于购房的资产复利终值系数(复利终值系数(N=离购离购房的年数,房的年数,i=投资报酬率)投资报酬率)+每年可供购房的储蓄每年可供购房的储蓄年金终值系数(年金终值系数(N=离购房的年数,离购房的年数,i=投资报酬投资报酬率)率)n可负担的购房贷款可负担的购房贷款 =每年可供购房的储蓄每年可供购房的储蓄年金现值系数(年金现值系数(N=贷款年贷款年限,限,i=房贷利率
14、)房贷利率)第17页/共27页购房总价估算购房总价估算案例案例n案例资料:李先生计划案例资料:李先生计划5年后购房。李先生家庭目年后购房。李先生家庭目前有金融资产前有金融资产15万元可用于购房。李先生一家目前万元可用于购房。李先生一家目前每年可结余每年可结余10万元,其中万元,其中4万元可用于购房。李先万元可用于购房。李先生拟贷款生拟贷款15年,银行房贷利率年,银行房贷利率6%,李先生的投资,李先生的投资报酬率约报酬率约4%。李先生一家可买总价是多少的房屋。李先生一家可买总价是多少的房屋?n李先生可负担的购房首付款李先生可负担的购房首付款=15万万(F/P,4%,5)+4万万(F/A,4%,5
15、)=39.92万元万元n李先生可负担的购房贷款总额李先生可负担的购房贷款总额=4万万(P/A,6%,15)=38.85万元万元n李先生购房时可负担房屋总价李先生购房时可负担房屋总价=39.92万元万元+38.85万万元元=78.77万元万元第18页/共27页n案例资料:客户王先生的儿子今年案例资料:客户王先生的儿子今年6岁。岁。王先生估计儿子上大学之前的教育费用不王先生估计儿子上大学之前的教育费用不多。他的子女教育投资规划目标是:在儿多。他的子女教育投资规划目标是:在儿子子18岁上大学时能积累足够的大学本科和岁上大学时能积累足够的大学本科和硕士的教育费用。硕士的教育费用。n王先生目前已经有王先
16、生目前已经有3万元教育准备金,不万元教育准备金,不足部分打算以足部分打算以定期定额定期定额投资基金的方式来投资基金的方式来解决。王先生投资的平均回报率大约解决。王先生投资的平均回报率大约4%。n为实现这一教育目标,请做一个教育投资为实现这一教育目标,请做一个教育投资规划。规划。六、教育资金的筹集第19页/共27页解题步骤解题步骤n(1)确定实现教育目标的当前费用)确定实现教育目标的当前费用n我国目前大学本科四年需要花费我国目前大学本科四年需要花费48000-72000元,取中间值元,取中间值60000。硕士研究生需。硕士研究生需要花费要花费30000-40000元,取中间值元,取中间值3500
17、0元元n简便起见,假设学费入学时一次性支付,简便起见,假设学费入学时一次性支付,不考虑学费支付的时间差异不考虑学费支付的时间差异n(2)预测教育费用增长率)预测教育费用增长率n结合通货膨胀率、大学收费增长、经济增结合通货膨胀率、大学收费增长、经济增长等因素,预测教育费用年均增长率为长等因素,预测教育费用年均增长率为5%第20页/共27页解题步骤(续)解题步骤(续)n(3)估算未来所需教育资金和当前现值)估算未来所需教育资金和当前现值n12年后上大学的费用年后上大学的费用:60000(1+5%)12=60000(F/P,5%,12)=107751元元n已准备金额:已准备金额:30000(1+4%
18、)12=30000(F/P,4%,12)=48031 元元n尚需准备金额:尚需准备金额:107751-48031=59720元元n每年应提存金额:每年应提存金额:59720(F/A,4%,12)=3975元,每元,每月应提存金额:月应提存金额:397512=331元(简便起见,不考虑每元(简便起见,不考虑每月提存的时间价值差异)月提存的时间价值差异)n简便计算方法:简便计算方法:n每期金额每期金额PMT(i=4%,N=12,PV=-30000,FV=107751)n使用使用Excel函数计算函数计算PMT(4%,12,-30000,107751,0)=3975元元第21页/共27页解题步骤(续
19、)解题步骤(续)n16年后王先生的儿子读硕士的教育规划:年后王先生的儿子读硕士的教育规划:n应准备硕士教育费用:应准备硕士教育费用:35000(1+5%)16=35000(F/P,5%,16)=76401元元n每年应提存金额:每年应提存金额:76401(F/A,4%,16)=3501元元n每月应提存金额:每月应提存金额:3501 12=292元元n现在到儿子上大学期间,王先生每月必须定期定现在到儿子上大学期间,王先生每月必须定期定额提存资金额提存资金331+292=623元元n儿子上大学到读硕士的四年间,王先生每月必须儿子上大学到读硕士的四年间,王先生每月必须定期定额提存资金定期定额提存资金2
20、92元元第22页/共27页七、退休资金的筹集七、退休资金的筹集n张先生现年张先生现年35岁,预计岁,预计60岁退休,退休后再生活岁退休,退休后再生活20年。假设张先生今后投资报酬率是年。假设张先生今后投资报酬率是10%,预计,预计退休第一年支出为退休第一年支出为16.4万元。万元。n(1)不考虑退休后的通货膨胀,张先生退休时,)不考虑退休后的通货膨胀,张先生退休时,需要储备多少养老金才能满足养老需要?需要储备多少养老金才能满足养老需要?n(2)假设张先生退休后,平均通货膨胀率是)假设张先生退休后,平均通货膨胀率是5%,张先生退休时,需要储备多少养老金才能满足,张先生退休时,需要储备多少养老金才
21、能满足支出养老需要?支出养老需要?n(3)假设张先生退休后每月领取社会养老保险金)假设张先生退休后每月领取社会养老保险金2000元,退休时退休金的缺口是多少?元,退休时退休金的缺口是多少?n(4)从现在起)从现在起25年内,每年应定期定额储蓄多少年内,每年应定期定额储蓄多少钱才能弥补上述退休金缺口?钱才能弥补上述退休金缺口?第23页/共27页案例计算案例计算n(1)不考虑通货膨胀时不考虑通货膨胀时,需要的退休储备金,需要的退休储备金 =16.4万万(P/A,10%,20)=139.62万元万元n(2)考虑通货膨胀时,考虑通货膨胀时,退休后第退休后第t年需要退休金年需要退休金 =16.4万万(1
22、+5%)t-1 折现到退休时的现值折现到退休时的现值 20年共需退休储备金年共需退休储备金=156190.5(P/A,4.76%,20)=198.67万元万元n说明:这意味着,退休后的年支出相当于一个每期支付说明:这意味着,退休后的年支出相当于一个每期支付156190.5元,期限元,期限20期,折现率期,折现率4.76%的年金。的年金。n使用的折现率使用的折现率=(1+10%)(1+5%)-1=4.76%第24页/共27页案例计算(续)案例计算(续)n(3)退休后每月领取社会养老保险金的现值)退休后每月领取社会养老保险金的现值=200012(P/A,10%,20)=20.43万元万元 退退休时
23、保险金的缺口休时保险金的缺口=198.67-20.43=178.24万元万元n(4)从现在起)从现在起25年内,为弥补退休金缺口,每年年内,为弥补退休金缺口,每年应定期定额储蓄应定期定额储蓄 =178.24万元万元(F/A,10%,25)=18124元元第25页/共27页八、规划求解通过单变量求解,可以根据给定的公式结果,计算出某个参数的值。对于更复杂的情况,如要求使公式结果最大或最小,同时对公式内的各参数存在某些约束条件,这时就需要使用规划求解工具。借助规划求解,可求得工作表上某个单元格(称为目标单元格)中公式的最优值。规划求解将对直接或间接与目标单元格中公式相关联的一组单元格中的数值进行调整,最终使目标单元格中的公式得到期望的结果。在创建模型过程中,要对规划求解模型中的可变单元格数值设置约束条件,而且约束条件可以引用其他影响目标单元格公式的单元格。第26页/共27页感谢观看!感谢观看!第27页/共27页
限制150内