空间几何体的表面积和体积周(教育精品).ppt
《空间几何体的表面积和体积周(教育精品).ppt》由会员分享,可在线阅读,更多相关《空间几何体的表面积和体积周(教育精品).ppt(77页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.3 1.3 简单几何体的表面积和体积简单几何体的表面积和体积 1 1、表面积:几何体表面的面积、表面积:几何体表面的面积 2 2、体积:几何体所占空间的大小。、体积:几何体所占空间的大小。*云在漫步云在漫步*云在漫步云在漫步表面积、全面积和侧面积表面积:立体图形的所能触摸到的面积之和叫做它的表面积。(每个面的面积相加)全面积全面积是立体几何里的概念,相对于截面积(“截面积”即切面的面积)来说的,就是表面积总和侧面积指立体图形的各个侧面的面积之和(除去底面)直棱柱:设棱柱的高为直棱柱:设棱柱的高为h,底面多边形的周长为,底面多边形的周长为c,则则S直棱柱侧直棱柱侧 .(类比矩形的面积)(类比
2、矩形的面积)圆柱:如果圆柱的底面半径为圆柱:如果圆柱的底面半径为r,母线长为,母线长为l,那么,那么S圆柱侧圆柱侧 .(类比矩形的面积)(类比矩形的面积)ch2rl知识点一:柱、锥、台、球的表面积与侧面积知识点一:柱、锥、台、球的表面积与侧面积(1)柱体的侧面积把直三棱柱侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?棱柱的侧面展开图是什么?如何计算它的表面积?棱柱的侧面展开图是什么?如何计算它的表面积?h正棱柱的侧面展开图正棱柱的侧面展开图思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形展开,分别得到什么图形?展开的图形与原
3、图展开的图形与原图 有什么关系?有什么关系?宽宽长方形长方形圆柱的侧面展开图是矩形圆柱的侧面展开图是矩形O正棱锥:设正棱锥底面正多边形的周长为正棱锥:设正棱锥底面正多边形的周长为c,斜,斜高为高为h,则,则S正棱锥侧正棱锥侧 .(类比三角形的面积)(类比三角形的面积)圆锥:如果圆锥的底面半径为圆锥:如果圆锥的底面半径为r,母线长为,母线长为l,那,那么么S圆锥侧圆锥侧 .(类比三角形的面积)(类比三角形的面积)12chrl(2)锥体的侧面积锥体的侧面积把正三棱锥侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?棱锥的侧面展开图是什么?如何计算它的表面积?棱锥的侧面展开图是什么?如何计算它的表面积
4、?正三棱锥的侧面展开图正三棱锥的侧面展开图侧面展开正五棱锥的侧面展开图正五棱锥的侧面展开图思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形展开,分别得到什么图形?展开的图形与原图展开的图形与原图 有什么关系?有什么关系?扇形扇形圆锥的侧面展开图是扇形圆锥的侧面展开图是扇形O 正棱台:设正正棱台:设正n棱台的上底面、下底面周棱台的上底面、下底面周长分别为长分别为c、c,斜高为,斜高为h,则正,则正n棱台的侧面积公棱台的侧面积公式:式:S正棱台侧正棱台侧 .圆台:如果圆台的上、下底面半径分别为圆台:如果圆台的上、下底面半径分别为r
5、、r,母线长为,母线长为l,则,则S圆台侧圆台侧 12(cc)hl(rr)(3)台体的侧面积台体的侧面积注注:表面积侧面积底面积:表面积侧面积底面积把正三棱台侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?(类比梯形的面积)(类比梯形的面积)侧面展开hh正四棱台的侧面展开图正四棱台的侧面展开图棱台的侧面展开图是什么?如何计算它的表面积?棱台的侧面展开图是什么?如何计算它的表面积?参照圆柱和圆锥的侧面展开图,试想象圆台的参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么侧面展开图是什么 OO圆台的侧面展开图是圆台的侧面展开图是扇环扇环思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线思考:把圆
6、柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形展开,分别得到什么图形?展开的图形与原图展开的图形与原图 有什么关系?有什么关系?扇环扇环扇环扇环OO侧侧OO圆柱、圆锥、圆台三者的表面积公式之间有什么关系?圆柱、圆锥、圆台三者的表面积公式之间有什么关系?Orr上底扩大上底扩大Or0上底缩小上底缩小 棱柱、棱锥、棱台都是由多个平面图形围成的几何体,棱柱、棱锥、棱台都是由多个平面图形围成的几何体,h它们的侧面展开图还是平面图形,它们的侧面展开图还是平面图形,计算它们的计算它们的表面积就是计算它的各个侧面面积和底面面积表面积就是计算它的各个侧面面积和底面面积之和之和例1:一个正三棱台的上
7、、下底面边长分别是3cm和6cm,高是3/2cm,求三棱台的侧面积.分析:关键是求出斜高,注意图中的直角梯形ABCC1A1B1O1ODD1E例3:圆台的上、下底面半径分别为2和4,高为 ,求其侧面展开图扇环所对的圆心角分析:抓住相似三角形中的相似比是解题的关键小结:1、抓住侧面展开图的形状,用好相应的计算公式,注意逆向用公式;2、圆台问题恢复成圆锥图形在圆锥中解决圆台问题,注意相似比.答:1800例:圆台的上、下底半径分别是10cm和20cm,它的侧面展开图的扇环的圆心角是1800,那么圆台的侧面积是多少?(结果中保留)小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键;2、对应的面积公式C=
8、0C=CS圆柱侧=2rlS圆锥侧=rlS圆台侧=(r1+r2)lr1=0r1=r2例1:一个正三棱柱的底面是边长为5的正三角形,侧棱长为4,则其侧面积为 _;答:60例2:正四棱锥底面边长为6,高是4,中截面把棱锥截成一个小棱锥和一个棱台,求棱台的侧面积 例例3 已知棱长为已知棱长为a,各面均为等边三角形的四面体,各面均为等边三角形的四面体S-ABC,求它的表面积,求它的表面积 DBCAS 分析:四面体的展开图是由四个全等的正三角形分析:四面体的展开图是由四个全等的正三角形组成组成因为因为BC=a,所以:所以:因此,四面体因此,四面体S-ABC 的表面积的表面积交交BC于点于点D解:先求解:先
9、求 的面积,过点的面积,过点S作作 ,例例4(2010年广东省惠州市高三调研年广东省惠州市高三调研)如图,已如图,已知正三棱柱知正三棱柱ABCA1B1C1的底面边长是的底面边长是2,D,E是是CC1,BC的中点,的中点,AEDE.(1)求此正三棱柱的侧棱长;求此正三棱柱的侧棱长;(2)正三棱柱正三棱柱ABCA1B1C1的表面积的表面积【思路点拨思路点拨】(1)证明证明AED为直为直角三角形,然后求侧棱长;角三角形,然后求侧棱长;(2)分别求出分别求出侧面积与底面积侧面积与底面积【点点评评】求表面积应分别求各部分面的面积,所以求表面积应分别求各部分面的面积,所以应弄清图形的形状,利用相应的公式求
10、面积,规则的图形应弄清图形的形状,利用相应的公式求面积,规则的图形可直接求,不规则的图形往往要再进行转化,常分割成几可直接求,不规则的图形往往要再进行转化,常分割成几部分来求部分来求思考:怎样求斜棱柱的侧面积?1)侧面展开图是 平行四边形 2)S斜棱柱侧=直截面周长侧棱长 3)S侧侧=所有侧面面积之和所有侧面面积之和1高考中对几何体的表面积的考查一般在客观题中,高考中对几何体的表面积的考查一般在客观题中,借以考查空间想象能力和运算能力,只要正确把握几何体借以考查空间想象能力和运算能力,只要正确把握几何体的结构,准确应用面积公式,就可以顺利解决的结构,准确应用面积公式,就可以顺利解决几何体的表面
11、积问题小结几何体的表面积问题小结2多面体的表面积是各个面的面积之和圆柱、多面体的表面积是各个面的面积之和圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和的面积之和3几何体的表面积应注意重合部分的处理几何体的表面积应注意重合部分的处理几何体占有空间部分的大小叫做它的体积几何体占有空间部分的大小叫做它的体积一、体积的概念与公理一、体积的概念与公理:公理公理1、长方体的体积等于它的长、宽、高的积。、长方体的体积等于它的长、宽、高的积。V长方体长方体=
12、abc推论推论1、长方体的体积等于它的底面积、长方体的体积等于它的底面积s和高和高h的积。的积。V长方体长方体=sh推论推论2、正方体的体积等于它的棱长、正方体的体积等于它的棱长a 的立方。的立方。V正方体正方体=a3公理公理2 2、夹在两个平行平面间的两个几何体,被平行、夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等。面的面积总相等,那么这两个几何体的体积相等。PQ祖暅原理祖暅原理定理定理1:柱体(棱柱、圆柱)的体积等于它柱体(棱柱、圆柱)的体积等于它的底面积的底面积 s
13、 和高和高 h 的积。的积。V柱体柱体=sh二:柱体的体积二:柱体的体积推论推论:底面半径为底面半径为r,高为高为h圆柱的体积是圆柱的体积是V圆柱圆柱=r2h三三:锥体体积锥体体积例例2 2:如图:三棱柱如图:三棱柱ADAD1 1C C1 1-BDC,-BDC,底面积为底面积为S S,高为高为h h.ABD C D1C1CDA BCD1ADCC1D1A答答:可分成可分成棱锥棱锥A-D1DC,棱锥棱锥A-D1C1C,棱锥棱锥A-BCD.问:(问:(1 1)从)从A A点出发棱柱能点出发棱柱能分割分割成几个三棱锥?成几个三棱锥?3.3.1 1锥体(棱锥、圆锥)的体积锥体(棱锥、圆锥)的体积 (底面
14、积(底面积S,高高h)注意:三棱锥的顶点和底面可以根据需要变换,四面体的每一个面都可以作为底面,可以用来求点到面的距离问题问题:锥体锥体(棱锥、圆锥)棱锥、圆锥)的体积的体积定理定理如果一个锥体(棱锥、圆锥)的底面如果一个锥体(棱锥、圆锥)的底面 积是,高是,那么它的体积是:积是,高是,那么它的体积是:推论:如果圆锥的底面半径是推论:如果圆锥的底面半径是,高是,高是,那么它的体积是:那么它的体积是:hSS锥体锥体 圆锥圆锥 Shss/ss/hx四四.台体的体积台体的体积V V台体台体=上下底面积分别是上下底面积分别是s/,s,高是高是h,则,则推论:如果圆台的上推论:如果圆台的上,下底面半径是
15、下底面半径是r r1 1.r.r2,2,高是高是,那么它的体积是:,那么它的体积是:圆台圆台 h五五.柱体、锥体、台体的体积公式之间有什么关系?柱体、锥体、台体的体积公式之间有什么关系?S为底面面积,为底面面积,h为柱体高为柱体高S分别为上、下分别为上、下底面底面面积,面积,h 为台体高为台体高S为底面面积,为底面面积,h为锥体高为锥体高上底扩大上底扩大上底缩小上底缩小(1)长方体的体积长方体的体积V长方体长方体abc .(其中其中a、b、c为长、宽、高,为长、宽、高,S为底面为底面积,积,h为高为高)(2)柱体柱体(圆柱和棱柱圆柱和棱柱)的体积的体积V柱体柱体Sh.其中,其中,V圆柱圆柱r2
16、h(其中其中r为底面半径为底面半径)Sh知识点二柱、锥、台、球的体积知识点二柱、锥、台、球的体积(3)锥体锥体(圆锥和棱锥圆锥和棱锥)的体积的体积V锥体锥体 Sh.其中其中V圆锥圆锥 ,r为底面半径为底面半径13r2h(4)台体的体积公式台体的体积公式V台台h(SS)注:注:h为台体的高,为台体的高,S和和S分别为上下分别为上下两个底面的面积两个底面的面积其中其中V圆台圆台 注:注:h为台体的高,为台体的高,r、r分别为上、分别为上、下两底的半径下两底的半径(5)球的体积球的体积V球球 .13h(r2rrr2)13R3例从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥ABCD,求它的
17、体积是正方体体积的几分之几?1求空间几何体的体积除利用公式法外,还求空间几何体的体积除利用公式法外,还常用分割法、补体法、转化法等,它们是解决一常用分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算问题的常用方法些不规则几何体体积计算问题的常用方法几何体的体积小结几何体的体积小结2计算柱体、锥体、台体的体积关键是根据计算柱体、锥体、台体的体积关键是根据条件找出相应的底面面积和高,要充分利用多面体条件找出相应的底面面积和高,要充分利用多面体的截面及旋转体的轴截面,将空间问题转化为平面的截面及旋转体的轴截面,将空间问题转化为平面问题问题RR球的体积:球的体积:一个半径和高都等于一个半径和
18、高都等于R的圆柱,挖去一个的圆柱,挖去一个以上底面为底面,下底面圆心为顶点的圆锥以上底面为底面,下底面圆心为顶点的圆锥后,所得的几何体的体积与一个半径为后,所得的几何体的体积与一个半径为R的的半球的体积相等。半球的体积相等。探究RR第一步:分割第一步:分割O O球面被分割成球面被分割成n n个网格,个网格,表面积分别为:表面积分别为:则球的表面积则球的表面积:则球的体积为:则球的体积为:设设“小锥体小锥体”的体积的体积为:为:O O知识点三、球的表面积和体积知识点三、球的表面积和体积(O O第二步:求近似和第二步:求近似和O O由第一步得由第一步得:第三步:转化为球的表面积第三步:转化为球的表
19、面积 如果网格分的越细如果网格分的越细,则则:由由 得得:球的体积球的体积:的值就趋向于球的半径的值就趋向于球的半径R RO O“小锥体小锥体”就越接近小棱锥。就越接近小棱锥。设球的半径为设球的半径为R,则球的体积公式为,则球的体积公式为V球球 .43R3例例1(2009年高考上海卷年高考上海卷)若球若球O1、O2表表面积之比面积之比4,则它们的半径之比,则它们的半径之比_.(1)(1)若球的表面积变为原来的若球的表面积变为原来的2 2倍倍,则半径变为原来的则半径变为原来的倍。倍。(2)(2)若球半径变为原来的若球半径变为原来的2 2倍,则表面积变为原来的倍,则表面积变为原来的倍。倍。(3)(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 几何体 表面积 体积 教育 精品
限制150内