高等数学--高斯公式.ppt
《高等数学--高斯公式.ppt》由会员分享,可在线阅读,更多相关《高等数学--高斯公式.ppt(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高等数学-高斯公式目录 上页 下页 返回 结束 一、高斯一、高斯(Gauss)公式公式定理定理1 上有连续的一阶偏导数,下面先证:函数 P,Q,R 在面 所围成,则有(Gauss 公式公式)高斯 的方向取外侧,设空间闭区域 由分片光滑的闭曲目录 上页 下页 返回 结束 目录 上页 下页 返回 结束 目录 上页 下页 返回 结束 目录 上页 下页 返回 结束 例例2其中 为锥面解解取上侧介于z=0及 z=h 之间部分的下侧,为法向量的方向角.所围区域为,则 利用Gauss 公式计算积分作辅助面目录 上页 下页 返回 结束 利用质心公式,注意思考思考:提示提示:介于平面 z=0 及 z=2之间部分
2、的下侧.先二后一计算曲面积分作取上侧的辅助面目录 上页 下页 返回 结束 例例3 设 为曲面取上侧,求 解解 作取下侧的辅助面用柱坐标用柱坐标用极坐标用极坐标目录 上页 下页 返回 结束 在闭区域 上具有一阶和二阶连续偏导数,证明格林(Green)第一公式 例例4其中 是整个 边界面的外侧.注意注意:高斯公式设函数目录 上页 下页 返回 结束 注意注意:高斯公式证证由高斯公式得移项即得所证公式.令目录 上页 下页 返回 结束*二、沿任意闭曲面的曲面积分为零的条件二、沿任意闭曲面的曲面积分为零的条件1.连通区域的类型连通区域的类型 设有空间区域 G,若 G 内任一闭曲面所围成的区域全属于 G,则
3、称 G 为空间二维单连通域;若 G 内任一闭曲线总可以张一片全属于 G 的曲面,则称 G 为例如例如,球面所围区域 环面所围区域 立方体中挖去一个小球所成的区域 不是二维单连通区域.既是一维也是二维单连通区域;是二维但不是一维单连通区域;是一维但空间一维单连通域.目录 上页 下页 返回 结束 2.闭曲面积分为零的充要条件闭曲面积分为零的充要条件定理定理2 在空间二维单 连通域G内具有连续一阶偏导数,为G内任一闭曲面,则证证根据高斯公式可知是的充分条件.的充要条件是:“必要性”.用反证法.已知成立,“充分性”.目录 上页 下页 返回 结束 因P,Q,R 在G内具有连续一阶偏导数,则存在邻域 则由
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 公式
限制150内