28章-锐角三角函数(全章课件)资料ppt.ppt
《28章-锐角三角函数(全章课件)资料ppt.ppt》由会员分享,可在线阅读,更多相关《28章-锐角三角函数(全章课件)资料ppt.ppt(68页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、28章章 锐角三角函数锐角三角函数为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能 在在RtABC中,中,C90,由于,由于A45,所以,所以RtABC是等腰是等腰直角三角形,由勾股定理得直角三角形,由勾股定理得因此因此 即在直角三角形中,当一个锐角等于即在直角三角形中,当一个锐角等于45时,不管这个直角三角形时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于的大小如何,这个角的对边与斜边的比都等于 如图,任意画一个
2、如图,任意画一个RtABC,使,使C90,A45,计算,计算A的对边与斜边的对边与斜边的比的比 ,你能得出什么结论?,你能得出什么结论?ABC=+=_=为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能综上可知,在一个综上可知,在一个RtABC中,中,C90,当,当A30时,时,A的对的对边与斜边的比都等于边与斜边的比都等于 ,是一个固定值;当,是一个固定值;当A45时,时,A的对的对边与斜边的比都等于边与斜边的比都等于 ,也是一
3、个固定值,也是一个固定值.一般地,当一般地,当A 取其他一定度数的锐角时,它的对取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?边与斜边的比是否也是一个固定值?为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能 在图中,由于在图中,由于CC90,AA,所以,所以RtABCRtABC 这就是说,在直角三角形中,当锐角这就是说,在直角三角形中,当锐角A的度数一定时,不管三角的度数一定时,不管三角形的大小如何,形的大小如何
4、,A的对边与斜边的比也是一个固定值并且的对边与斜边的比也是一个固定值并且直角直角三角形中一个锐角的度数越大,它的三角形中一个锐角的度数越大,它的对边与斜边对边与斜边的比值越大的比值越大任意画任意画RtABC和和RtABC,使得,使得CC90,AA,那么那么 与与 有什么关系你能解有什么关系你能解释释一下一下吗吗?探究探究ABCABC 如图,在如图,在RtABC中,中,C90,我们把锐角,我们把锐角A的对边与的对边与斜边的比叫做斜边的比叫做A的正弦的正弦(sine),记住),记住sinA 即即当当A30时,我们有时,我们有当当A45时,我们有时,我们有ABCcab对边对边斜边斜边在图中在图中A的
5、对边记作的对边记作aB的对边记作的对边记作bC的对边记作的对边记作c 1、正、正 弦弦 函函 数数同理,sin60=注意注意sinA是一个完整的符号,它表示是一个完整的符号,它表示A的的正弦,记号里习惯省去角的符号正弦,记号里习惯省去角的符号“”;sinA没有单位,它表示一个比值,即直没有单位,它表示一个比值,即直角三角形中角三角形中A的对边与斜边的比;的对边与斜边的比;sinA不表示不表示“sin”乘以乘以“A”。正弦的常见表示:sinA、sin42 、sin (省去角的符号)sinDEF、sin1 (不能省去角的符号)例例1 如图,在如图,在RtABC中,中,C90,求,求sinA和和si
6、nB的值的值解:解:(1)在)在RtABC中,中,因此因此(2)在)在RtABC中,中,因此因此ABCABC3413 例例 题题 示示 范范5练一练练一练1.判断对错判断对错:A10m6mBC1)如图如图 (1)sinA=()(2)sinB=()(3)sinA=0.6m ()(4)SinB=0.8 ()sinAsinA是一个比值(注意比的顺序),无单位;是一个比值(注意比的顺序),无单位;2)如图,如图,sinA=()2.2.在在RtABCRtABC中,锐角中,锐角A A的对边和斜边同时扩大的对边和斜边同时扩大 100100倍,倍,sinAsinA的值(的值()A.A.扩大扩大100100倍倍
7、 B.B.缩小缩小 C.C.不变不变 D.D.不能确定不能确定C练一练练一练3.如图如图ACB37300则则 sinA=_ .12根据下图,求根据下图,求sinA和和sinB的值的值ABC35 练习解:解:(1)在)在RtABC中,中,因此因此根据下图,求根据下图,求sinA和和sinB的值的值ABC125 练习解:解:(1)在)在RtABC中,中,因此因此根据下图,求根据下图,求sinB的值的值ABCn 练习解:解:(1)在)在RtABC中,中,因此因此m 练习如图,如图,RtABC中,中,C=90度,度,CDAB,图中,图中sinB可由哪可由哪两条线段比求得。两条线段比求得。DCBA解:在
8、解:在RtABC中,中,在在RtBCD中,中,因为因为B=ACD,所以,所以 求一个角的正弦值,除了用定义直接求外,还可以求一个角的正弦值,除了用定义直接求外,还可以转化为求和它相等角的正弦值。转化为求和它相等角的正弦值。如图如图,C=90CDAB.sinB可以由哪两条线段之比可以由哪两条线段之比?想一想想一想若若C=5,CD=3,求求sinB的值的值.ACBD解解:B=ACD sinB=sinACD在在RtACD中,中,AD=sin ACD=sinB=4回味无穷小结 拓展1.1.锐角三角函数定义锐角三角函数定义:2.sinA2.sinA是是A A的函数的函数ABCA的对边斜边斜边A的对边si
9、nA=sinA=4.只有不断的思考只有不断的思考,才会有新的发现才会有新的发现;只有量的变化只有量的变化,才才会有质的进步会有质的进步.Sin300 =sin45=sin60=3 3.sinA.sinA是线段之间的一个比值是线段之间的一个比值 ,sinAsinA没有单位没有单位 小结小结如图,如图,RtABC中,直角边中,直角边AC、BC小于斜边小于斜边AB,所以所以0sinA 1,0sinB 1,如果如果A B,则则BCAC,那么那么0 sinA sinB 1ABC111.1.sinA的取值范围是什么?的取值范围是什么?2 2结合右图,思考结合右图,思考A A的其他两边的比值是的其他两边的比
10、值是 不是也是唯一确定的?发挥你的聪明才智不是也是唯一确定的?发挥你的聪明才智,动手动手 试一试试一试探究探究如图,在如图,在RtABCRtABC中,中,C C9090,当锐角,当锐角A A确定时,确定时,A A的对边与斜边的比就随之确的对边与斜边的比就随之确定,此时,其他边之间的比定,此时,其他边之间的比是否也确定了呢?为什么?是否也确定了呢?为什么?ABC邻边邻边b对边对边a斜边斜边c 当锐角当锐角A A的大小确定时,的大小确定时,A A的邻边与斜边的比、的邻边与斜边的比、A A的对边与邻边的比的对边与邻边的比也分别是确定的,我们把也分别是确定的,我们把A A的邻边与斜边的比叫做的邻边与斜
11、边的比叫做A A的余弦(的余弦(cosinecosine),),记作记作cosAcosA,即,即 把把A A的对边与邻边的比叫做的对边与邻边的比叫做A A的正切(的正切(tangenttangent),记作),记作tanAtanA,即,即 锐角锐角A A的正弦、余弦、正切都叫做的正弦、余弦、正切都叫做A A的锐角三角函数的锐角三角函数 精讲精讲 对于锐角对于锐角A A的每一个确定的的每一个确定的值,值,sinAsinA有唯一有唯一确定的值与它对确定的值与它对应,所以应,所以sinAsinA是是A A的函数的函数。同样地,同样地,cosAcosA,tanAtanA也是也是A A的函数的函数。锐角
12、锐角A的正弦、余弦、的正弦、余弦、正切都叫做正切都叫做A的的锐角三锐角三角函数角函数.1.下图中下图中ACB=90ACB=90,CDAB,CDAB,垂足为垂足为D.D.指出指出A A和和B B的对边、邻边的对边、邻边.练习练习ABCD(1)sinA=AC()BC()(3)sinB=AB()CD()CDABBCAC(2)cosA=AC()AC()(4)cosB=AB()BD()ADABBCCD 例例2 如图,在如图,在RtABC中,中,C90,BC6,sinA ,求,求cosA、tanB的值的值解:解:又又ABC6 例例 题题 示示 范范 变题:变题:如图,在如图,在RtABC中,中,C90,c
13、osA ,求,求sinA、tanA的值的值解:解:ABC 例例 题题 示示 范范设设AC=15k,则,则AB=17k所以所以 例例3:如图,在如图,在RtABC中,中,C90 例例 题题 示示 范范1.求证:求证:sinA=cosB,sinB=cosA2.求证:求证:3.求证:求证:ABC1.分别求出下列直角三角形中两个锐角的正弦值、余弦值和正切值分别求出下列直角三角形中两个锐角的正弦值、余弦值和正切值练练 习习解:由勾股定理解:由勾股定理ABC13122.在在RtABC中,如果各边长都扩大中,如果各边长都扩大2倍,那么锐角倍,那么锐角A的正弦值、余的正弦值、余弦值和正切值有什么变化?弦值和正
14、切值有什么变化?ABC解:设各边长分别为解:设各边长分别为a、b、c,A的三个三角函数分别为的三个三角函数分别为则扩大则扩大2倍后三边分别为倍后三边分别为2a、2b、2cABC3.如图,在如图,在RtABC中,中,C90,AC8,tanA ,求:求:sinA、cosB的值的值ABC8解:解:小结小结如图,如图,RtABC中,中,C=90度,度,因为因为0sinA 1,0sinB 1,tan A0,tan B0ABC 0cosA 1,0cosB 1,所以,所以,对于任何一个锐角对于任何一个锐角,有,有0sin 1,0cos 1,tan 0,定义定义中应该注意的几个问题中应该注意的几个问题:1 1
15、、sinAsinA、cosAcosA、tanAtanA是在是在直角三角形直角三角形中定义的,中定义的,A A是是锐角锐角(注意注意数形结合数形结合,构造直角三角形,构造直角三角形)。2 2、sinAsinA、cosAcosA、tanAtanA是一个是一个比值比值(数值数值)。)。3 3、sinAsinA、cosA cosA、tanAtanA的大小只与的大小只与A A的大小的大小有关,有关,而与而与直角三角形的边长直角三角形的边长无关。无关。若已知锐角若已知锐角的始边在的始边在x x轴的正半轴上轴的正半轴上,(,(顶点顶点在原点在原点)终边上一点终边上一点P P的坐标为的坐标为(x,y)(x,y
16、),它到原,它到原点的距离为点的距离为r r求角求角的四个三角函数值。的四个三角函数值。推广推广xyPO(x,y)rsin=sin=,cos=cos=,tan=tan=,cot=cot=M 例例4:如图,已知如图,已知AB是半圆是半圆O的直径,弦的直径,弦AD、BC相交于点相交于点P,若,若 例例 题题 示示 范范 那么那么 ()B变题:变题:如图,已知如图,已知AB是半圆是半圆O的直径,弦的直径,弦AD、BC相交于点相交于点P,若,若AB=10,CD=6,求,求 .a aOCDBAP4.如图,在如图,在ABC中,中,AD是是BC边上的高,边上的高,tanB=cosDAC,(1)求证:)求证:
17、AC=BD;(2)若)若 ,BC=12,求,求AD的长。的长。DBCA5.如图,在如图,在ABC中,中,C=90度,若度,若 ADC=45度,度,BD=2DC,求求tanB及及sinBAD.DABCAD=8新人教版九年级数学新人教版九年级数学(下册下册)第二十八章第二十八章 28.2 28.2 解直角三角形(解直角三角形(1 1)复习复习30、45、60角的正弦值、余弦值和正切值如下表:角的正弦值、余弦值和正切值如下表:对于对于sinsin与与tantan,角度越大,函数值也越大;,角度越大,函数值也越大;对于对于coscos,角度越大,函数值越小。,角度越大,函数值越小。问题:问题:要想使人
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 28 锐角三角 函数 课件 资料 ppt
限制150内