微分中值定理及应用.ppt
《微分中值定理及应用.ppt》由会员分享,可在线阅读,更多相关《微分中值定理及应用.ppt(64页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高等院校非数学类本科数学课程 一元微积分学 大 学 数 学(一一)第十九讲第十九讲第十九讲第十九讲 微分中值定理微分中值定理微分中值定理微分中值定理脚本编写:刘楚中教案制作:刘楚中 第四章 一元函数的导数与微分本章学习要求:理解导数和微分的概念。熟悉导数的几何意义以及函数的可 导、可微、连续之间的关系。熟悉一阶微分形式不变性。熟悉导数和微分的运算法则,能熟练运用求导的基本公式、复合函数求导法、隐函数求导法、反函数求导法、参数方程 求导法、取对数求导法等方法求出函数的一、二阶导数和微 分。了解 n 阶导数的概念,会求常见函数的 n 阶导数。熟悉罗尔中值定理、拉格朗日中值定理、柯西中值定理和泰 勒
2、中值定理,并能较好运用上述定理解决有关问题(函数方 程求解、不等式的证明等)。掌握罗必塔法则并能熟练运用它计算有关的不定式极限。第五节 微分中值定理第四章 一元函数的导数与微分一.费马定理二.罗尔中值定理三.拉格朗日中值定理四.柯西中值定理费马定理罗尔中值定理拉格朗日中值定理柯西中值定理泰勒中值定理 微分中值定理函数导数的定义为即函数在点 x 处的导数等于时,函数的极限值.在点 x 处的差商导数与差商 我们常常需要从函数的导数所给出的局部的或“小范围”性质,推出其整体的或“大范围”性质.为此,我们需要建立函数的差商与函数的导数间的基本关系式,这些关系式称为“微分学中值定理”.这些中值定理的创建
3、要归功于费马、拉格朗日、柯西等数学家.首先,从直观上来看看“函数的差商与函数的导数间的基本关系式”是怎么一回事.导数与差商相等!将割线作平行移动,那么它至少有一次会达到这样的位置:在曲线上与割线距离最远的那一点P 处成为切线,即在点P 处与曲线的切线重合.也就是说,至少存在一点使得该命题就是微分中值定理.极值的定义一.费马定理 可微函数在区间内部取极值的必要条件是函数在该点的导数值为零.定理定理定理定理费马定理的几何解释 如何证明?则有于是(极小值类似可证)证证证证如何保证函如何保证函数在区间内数在区间内部取极值?部取极值?但是不保证在内部!水平的可保证在内部一点取到极值二.罗尔中值定理设则至
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分 中值 定理 应用
限制150内