长安大学测量学测量误差基本理论.pptx
《长安大学测量学测量误差基本理论.pptx》由会员分享,可在线阅读,更多相关《长安大学测量学测量误差基本理论.pptx(51页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、6-1 概述一、测量误差的概念人们对客观事物或现象的认识总会存在不同程度的误差。这种误差在对变量进行观测和量测的过程中反映出来,称为测量误差。二、观测与观测值的分类1同精度观测和不同精度观测在相同的观测条件下,即用同一精度等级的仪器、设备,用相同的方法和在相同的外界条件下,由具有大致相同技术水平的人所进行的观测称为同精度观测,其观测值称为同精度观测值或等精度观测值。反之,则称为不同精度观测,其观测值称为不同(不等)精度观测值。第1页/共51页6-1 概述二、观测与观测值的分类2直接观测和间接观测为确定某未知量而直接进行的观测,即被观测量就是所求未知量本身,称为直接观测,观测值称为直接观测值。通
2、过被观测量与未知量的函数关系来确定未知量的观测称为间接观测,观测值称为间接观测值。3独立观测和非独立观测各观测量之间无任何依存关系,是相互独立的观测,称为独立观测,观测值称为独立观测值。若各观测量之间存在一定的几何或物理条件的约束,则称为非独立观测,观测值称为非独立观测值。第2页/共51页6-1 概述三、测量误差及其来源1测量误差的定义真值:客观存在的值“X”(通常不知道)真误差:真值与观测值之差,即:真误差=真值-观测值 2测量误差的反映测量误差是通过“多余观测”产生的差异反映出来的。3测量误差的来源(1)测量仪器:仪器精度的局限、轴系残余误差等。(2)观测者:判断力和分辨率的限制、经验等。
3、(3)外界环境条件:温度变化、风、大气折光等。第3页/共51页6-1 概述四、测量误差的种类按测量误差对测量结果影响性质的不同,可将测量误差分为系统误差和偶然误差两类。1系统误差在相同的观测条件下,对某量进行的一系列观测中,数值大小和正负符号固定不变或按一定规律变化的误差,称为系统误差。系统误差可以消除或减弱。(计算改正、观测方法、仪器检校)例:误差 处理方法 钢尺尺长误差 ld 计算改正 钢尺温度误差 lt 计算改正 水准仪视准轴误差I 操作时抵消(前后视等距)经纬仪视准轴误差C 操作时抵消(盘左盘右取平均)第4页/共51页6-1 概述四、测量误差的种类2偶然误差在相同的观测条件下对某量进行
4、一系列观测,单个误差的出现没有一定的规律性,其数值的大小和符号都不固定,表现出偶然性,这种误差称为偶然误差,又称为随机误差。例:估读数、气泡居中判断、瞄准、对中等误差,导致观测值产生误差。第5页/共51页6-1 概述四、测量误差的种类 几个概念:准确度:(测量成果与真值的差异,取决于系统误差的大小)精(密)度:(观测值之间的离散程度,取决于偶然误差的大小)最或是值:(最接近真值的估值,最可靠值);测量平差:(求解最或是值并评定精度)。第6页/共51页6-1 概述五、偶然误差的特性及其概率密度函数例如,在相同条件下对某一个平面三角形的三个内角重复观测了358次,由于观测值含有误差,故每次观测所得
5、的三个内角观测值之和一般不等于180,按下式算得三角形各次观测的真误差i,然后对三角形闭合差i进行分析。分析结果表明,当观测次数很多时,偶然误差的出现,呈现出统计学上的规律性。而且,观测次数越多,规律性越明显。第7页/共51页6-1 概述误差区间误差区间负误差正误差个数个数相对个数个数个数相对个数0.00.2450.126460.1280.20.4400.112410.1150.40.6330.092330.0920.60.8230.064210.0590.81.0170.047160.0451.01.2130.036130.0361.21.460.01750.0141.41.640.0112
6、0.0061.6以上00.00000.000总和1810.5051770.495第8页/共51页6-1 概述五、偶然误差的特性及其概率密度函数偶然误差的四个特性:(1)有界性:在一定的观测条件下,偶然误差的绝对值不会超过一定的限度,即偶然误差是有界的;(2)单峰性:绝对值小的误差比绝对值大的误差出现的机会大;(3)对称性:绝对值相等的正、负误差出现的机会相等;(4)补偿性:在相同条件下,对同一量进行重复观测,偶然误差的算术平均值随着观测次数的无限增加而趋于零,即第9页/共51页6-1 概述五、偶然误差的特性及其概率密度函数用频率直方图表示的偶然误差统计:频率直方图中,每一条形的面积表示误差出现
7、在该区 间的频率k/n,而所有条形的总面积等于1。频率直方图的中间高、两边低,并向横轴逐渐逼近,对称于y轴。各条形顶边中点连线经光滑后 的曲线形状,表现出偶然误差 的普遍规律。第10页/共51页6-1 概述五、偶然误差的特性及其概率密度函数用频率直方图表示的偶然误差统计:当观测次数n无限增多(n)、误差区间d无限缩小(d0)时,各矩形的顶边就连成一条光滑的曲线,这条曲线称为“正态分布曲线”,又称为“高斯误差分布曲线”。所以偶然误差具有正态分布的特性。第11页/共51页6-1 概述五、偶然误差的特性及其概率密度函数偶然误差处理方式 第12页/共51页6-2 衡量精度的指标 一、精度精确度是准确度
8、与精密度的总称。对基本排除系统误差,而以偶然误差为主的一组观测值,用精密度来评价该组观测值质量的优劣。精密度简称精度。二、中误差某观测值真值X已知;(设在相同观测条件下,对任一个未知量进行了n次观测,其观测值分别为 、,n个观测值的真误差 、。为了避免正负误差相抵消和明显地反映观测值中较大误差的影响,通常是以各个真误差的平方和的平均值再开方作为评定该组每一观测值的精度的标准,即第13页/共51页6-2 衡量精度的指标 二、中误差某观测值真值X已知;(设在相同观测条件下,对任一个未知量进行了n次观测,其观测值分别为 、,n个观测值的真误差 、。为了避免正负误差相抵消和明显地反映观测值中较大误差的
9、影响,通常是以各个真误差的平方和的平均值再开方作为评定该组每一观测值的精度的标准,即m称为中误差,m小精度高;m大精度低。n观测值个数 真误差第14页/共51页6-2 衡量精度的指标二、中误差例:设有甲、乙两个小组,对三角形的内角和进行了9次观测,分别求得其真误差为:甲组:乙组:试比较这两组观测值的中误差。解:说明乙组的观测精度比甲组高。第15页/共51页6-2 衡量精度的指标三、容许误差根据误差分布的密度函数,误差出现在微分区间d内的概率为:误差出现在K倍中误差区间内的概率为:将K=1、2、3分别代入上式,可得到偶然误差分别出现在一倍、二倍、三倍中误差区间内的概率:P(|m)=0.683=6
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 长安大学测量学 测量误差基本理论 长安 大学 测量学 测量误差 基本理论
限制150内