建筑设备工程的基本知识.ppt
《建筑设备工程的基本知识.ppt》由会员分享,可在线阅读,更多相关《建筑设备工程的基本知识.ppt(107页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章 建筑设备工程的基本知识 1.1流体动力学的基本知识1.2传热学的基本知识1.3电工基本知识1.1流体动力学的基本知识流体的主要力学性质描述流体运动的几个有关概念流体运动的分类恒定流连续性方程恒定元流能量方程流动阻力和流动损失流体的主要力学性质流体的流动性是流体的最基本的特性,流动性是指流体不能承受切向力,如果有切向力存在,即使切向力很微小,流体也会发生变形。流体的流动性主要是由其力学性质决定的,流体的主要力学性质有:1.质量密度和重力密度2.流体的黏滞性3.流体的压缩性和热胀性流体的主要力学性质1.质量密度和重力密度在描述固体物质的惯性和重力特性时,通常用物体的质量和重力,而流体因为没
2、有固定的体积,在描述其惯性大小和重力大小时,用单位体积的质量和单位体积的重力来表示,即质量密度()和重力密度()。质量密度定义式为(kg/m3)(1.1)式中:M流体的质量(kg);V 流体的体积(m3)。重力密度定义式为(N/m3)(1.2)式中:G流体的重量(N);V 流体的体积(m3)。由上两式可知G/VMg/Vg(1.3)流体的主要力学性质2.流体的黏滞性流体的黏滞性流体流动时,流体内部各质点间或流层间因相对运动而产生内摩擦力以反抗流体质点间相对运动的性质,称作流体的黏滞性。管段中断面流速分布如图1.1所示。图1.1平板间的速度分布流体的主要力学性质根据牛顿摩擦定律,可得到流体黏滞力的
3、表达式为TAdu/dy(1.4)式中:流体的黏滞系数;A 流层间的接触面积(m2);du/dy 流速梯度,表示流速沿垂直于流速方向的变化率。若用代表单位面积上流体的黏滞力,又称作切向力T/Adu/dy(1.5)流体黏滞性的大小除了用黏滞系数来表示外,还可用黏滞系数与流体密度的比值来表示,即/(1.6)为了区分这两个系数,称作动力黏性系数,称作运动黏性系数。流体的主要力学性质3.流体的压缩性和热胀性流体的压缩性和热胀性流体受压、体积缩小、密度增大的性质,称作流体的压缩性;流体受热、体积膨胀、密度减小的性质,称作流体的热胀性。对于液体和气体,其压缩性和热胀性有所区别,因此要分别进行研究。(1)液体
4、的压缩性和热胀性液体的压缩性通常用压缩系数来表示,它的意义是:在一定温度下,升高一个单位压力时,流体体积的相对缩小量。液体的压缩性也可用体积弹性模数E(E为压缩系数的倒数)来表示,它是指单位体积的相对变化所需的压力增量。液体的压缩性很小,通过计算,水的压力再增加一个标准大气压时,其体积只缩小了1/20 000。因此,在实际工程中,可认为液体流体的密度在整个流动过程中是不变的,即认为是不可压缩流体。流体的膨胀性通常用膨胀系数来表示。它是指在一定的压力下温度升高1K时,流体体积的相对增加量。不同的流体随着温度的变化,其体积都有所变化,因此在实际工程中,要考虑受热体积膨胀带来的危害。流体的主要力学性
5、质(2)气体的压缩性和热胀性气体的压缩性和热胀性比液体较明显,在常温常压下,气体的压强p、比容v、温度T三个基本参数之间满足理想气体状态方程式pvRT(1.7)根据压缩系数的定义得 根据膨胀系数的定义得流体的主要力学性质通过以上的介绍,我们知道流体的物理性质是比较复杂的,如果在研究流体的运动规律时,考虑全部因素,则无法进行准确的研究,而我们在实际工程中通常研究的都是流体的宏观运动,因此在实际工程中,首先我们把流体视作连续介质,即在我们的研究空间内,流体是质点间无孔隙的连续体;其次,在一些问题的研究中,流体可以看做无黏性流体,即忽略流体的黏滞性影响;再次,把流体看做不可压缩流体,液体的压缩性很小
6、,可以忽略,而对气体来讲,在气体流速不超过音速的情况下,其压缩性对流体的宏观运动影响很小,因此也视为不可压缩流体。描述流体运动的几个有关概念1.流线和迹线流线是同一时刻连续流体质点的流动方向线;迹线是同一质点在连续时间内的流动轨迹线。流线是为了形象化的描述流体的运动而引入的概念。在实际工程中,我们通常关心的是流体在某一固定断面或固定空间的运动状况,而不关心其来龙去脉,因此我们主要来研究流线。描述流体运动的几个有关概念流线可以反映流体流动的一些性质,如图1.2所示。通过流场中的每一个点都可以绘一条流线,所以流线布满整个流场。流线绘出后,流体的流动状况就一目了然。某点的流速方向就是流线在该点的切线
7、方向;流线的疏密可以反映流速的大小,流线越疏,流速越小,流线越密,流速越大;流线不能相交,也不能是折线,只能是一条光滑的曲线或直线。图1.2流线描述流体运动的几个有关概念2.过流断面前面引入了流线的概念,我们通过流线来定义过流断面。在垂直于流动方向的平面上,取任意封闭曲线,经过封闭曲线上的全部点作流线,这些流线组成管状流面,称为流管。流管以内的流动总体,称为流束。垂直于流束的断面,称为流束的过流断面。描述流体运动的几个有关概念3.元流、总流当流束以一根流线为极限,而使流束的过流断面面积趋近于零时,这根流束就成为元流。在设备专业实际工程中,用以输送流体的管道流动,由于流场具有长形流动的几何形态,
8、因此整个流动可以看做无数元流相加,这样的流动总体称为总流;处处垂直于总流中全部流线的断面,是总流的过流断面。描述流体运动的几个有关概念4.流量流体流动时,单位时间内通过过流断面的流体体积称为流体的体积流量。一般用Q来表示,单位为m3/s或L/s。流体的流量一般是指体积流量。要计算流量的大小,我们假设流体在管道内流动,任意取出一过流断面,断面上的流速分布如图1.3所示。图1.3断面平均流速描述流体运动的几个有关概念在在断断面面上上取取元元面面积积dA,u为为dA上上的的流流速速,则则dA断断面面上上全全部部质质点点单单位位时时间间的的位位移移为为u,即即单单位位时时间间内从内从dA面面积积上流上
9、流过过的流体体的流体体积为积为dQudA则单则单位位时间时间内流内流过过全部断面全部断面A的流体体的流体体积积Q即即为为Q udA (1.8)式中:式中:Q该该断面的流量。断面的流量。v断断面面平平均均流流速速,即即过过流流断断面面面面积积乘乘断断面面平平均均流流速速v所所得得到到的的流流量量,等等于于该该断断面面以以实实际际流流速速通通过过的流量,即的流量,即QvA (1.9)则则vQ/A udA/A (1.10)流体运动的分类流体运动的分类流体运动有不同的分类方法,下面分别介绍。1.根据流动的流体的周界与固体壁面的接触根据流动的流体的周界与固体壁面的接触情况来划分情况来划分(1)压力流流体
10、在压差作用下流动时,整个流体的周界与固体壁面都接触,流体无自由表面,这种流动称作压力流。如室内给水系统的水在管道中的流动,空调工程中的空气在风管道中的流动,供热工程中热水或蒸汽在管道中的流动等,都是压力流。流体运动的分类流体运动的分类压力流有三个特点:1)流体充满整个管道。2)不能形成自由表面。3)流体对管壁有一定的压力。流体运动的分类流体运动的分类(2)无压流无压流又称为重力流,流体流动时,流体的部分周界与固体壁面相接触,另一部分周界与空气相接触,这种流动称作无压流。如室内排水系统中污水在管道中的流动,水渠中的水在水渠里的流动等都是无压流。无压流有两个特点:1)液体流体没有充满管道,所以在室
11、内排水中引入了充满度的概念,即污水在管道中的深度h与管径D的比值称做管道的充满度,充满度的大小在排水系统设计中是很重要的参数。2)液体流体在管道或水渠中能够形成自由表面。流体运动的分类流体运动的分类压力流和无压流的图解如图1.4(a)(c)所示。图1.4压力流、无压流图解流体运动的分类流体运动的分类2.根据流体流动时压力、流速等运动要素随时间是根据流体流动时压力、流速等运动要素随时间是否变化来划分否变化来划分(1)恒定流要定义恒定流和非恒定流的概念,我们以打开水龙头的过程为例:打开之前,水处于静止状态,称为静止平衡,打开后的短暂时间内,水从喷口流出,流速从零迅速增加到某一流速,在这个过程中,流
12、速时刻在发生变化,称为运动的不平衡状态,当达到某一流速后,即维持不变,此时称为运动的平衡状态。处于运动平衡状态的流体,各点的流速不随时间变化,由流速决定的压强、黏性力和惯性力也不随时间变化,这种流动称为恒定流。流体运动的分类流体运动的分类(2)非恒定流处于运动不平衡状态的流体,它的各点的流速随着时间变化,各点的压强、黏性力、惯性力也随着速度的变化而变化,这种流动称为非恒定流。在实际工程中所接触的流体流动,都可以视作恒定流动,给分析和计算带来很大方便。恒定流连续性方程恒定流连续性方程是由质量守恒定律得出的,质量守恒定律告诉我们,同一流体的质量在运动过程中不生不灭,即流体运动到任何地方,其质量是恒
13、定不变的。如图1.5所示,在恒定流条件下,可以考虑以下几点:图1.5恒定流连续方程图解恒定流连续性方程1)由于是恒定流,流体的各点的流速不随时间发生变化。2)流体是连续介质,中间不会形成空隙。3)流体不能从研究对象流体的侧壁流入或流出。在恒定流的管道上取-和-两个过流断面,根据质量守恒定律,通过断面-的质量流量等于通过断面-的质量流量,假设断面-处的断面面积为A1,流体的密度为1,流入的流体体积流量为Q1;假定断面-处的断面面积为A2,流体的密度为2,流出的流体体积流量为Q2,即1Q12Q2 (1.11)若在管道上取n个过流断面,则式(1.11)可写成1Q12Q2 nQn (1.12)恒定流连
14、续性方程由前面学习可知,在设备工程中的流体都可视作不可压缩流体,即各个过流断面上的流体密度不变,为常数。因此,流体的连续性方程可以写成Q1Q2Qn (1.13)因为QvA,代入上式得v1A1v2 A2vnAn (1.14)从上式可以得出v1v2vn1/A11/A21/An (1.15)从连续性方程可以看出,连续性方程确立了总流各过流断面平均流速沿流向的变化规律,只要总流的流量已知或任意断面的流速已知,则其他断面的流速即可算出。恒定流连续性方程【例1.1】如图1.6所示管段。d12.5cm,d25cm,d310cm。当流量为4 L/s时,求各管段的平均流速。图1.6恒定流连续性方程【解】根据连续
15、性方程Qv1 A1 v2 A2 v3A3 v1Q/A1 815cm/s8.15m/s同理可得v22.04m/sv30.51m/s以上所列连续性方程,不但只限于两断面之间,还可推广到任意空间,在管道的三通处,无论分流还是合流,质量守恒定律仍然成立,即分流时QQ1 Q2 合流时Q1 Q2 Q 恒定元流能量方程能量的守恒和转换定律告诉我们:能量即不会消灭,也不会创生,它只能从一种形式转换成另一种形式,或者从一种物体转移到另一个物体,而在转换或转移过程中能量的总和保持不变。流体有三种能量即位能、压能和动能。位能用Z来表示,压能用来表示,动能用来表示。当流体在管道中流动时,根据能量守恒定律,这三种能量的
16、总和保持不变,也就是说,在理想流动的某管段上取两个断面1-1和2-2,该两个断面上的三种能量之和是相等的,即Z1Z2 (1.16)式(1.16)就是理想流动时的能量守恒方程,也称作伯努利方程。恒定元流能量方程实际上,流体在管道内流动,由于流体本身存在黏滞力,以及管道的内壁面有一定的粗糙度,流体在流动是由流动阻力存在,也就是流体在流动过程中要消耗一部分能量来克服这种流动阻力,这样h必然使得这部分能量变成热能而损失掉。若单位重量的流体从-断面流道-断面的消耗掉的能量为h,则式(1.16)就变成Z1Z2h(1.17)式(1.17)就是流体实际流动时的伯努利方程。伯努利方程在实际工程中应用很广,下面通
17、过举例来说明。恒定元流能量方程【例1.2】如图1.7 所示,要用水泵将水池中的水抽到用水设备,已知该用水设备的用水量为60m3/h,用水设备的出水管高出蓄水池液面10m,用水设备处的水的压力为150kPa,如果采用直径d100mm的管道输送到用水设备,试确定该水泵的扬程需要多大才可以达到要求?图1.7水池水泵恒定元流能量方程【解】1)取断面-和-。我们取蓄水池的自由液面为-断面,取用水设备出口处为断面-。2)取-断面为基准面,根据方程式(1.17)列出两个断面的方程。Z1hbZ2h 式中:Z10;P10(液面相对压强为零);v10(与-断面处的水流速相比很微小可以忽略);Z210m;P2 15
18、0kPa;v2 Q/A 2.12m/s。恒定元流能量方程水泵的扬程为hb10 h 25.52h从上面例题可以看出,通过能量方程就可以确定水泵的扬程,即仅知道水从蓄水池到用水设备的水头损失h是多少即可。流动阻力和流动损失流体在流动过程中,主要有两种阻力:一种是沿程阻力,一种是局部阻力。因此,流体在流动过程中由于流动阻力的存在而造成的能量损失相应的有两种,一种是沿程损失;一种是局部损失。1.沿程阻力和沿程损失由于流体具有黏滞性且管壁的表面不光滑,流体在运动过程中会产生内摩擦力和管壁造成的摩擦力,从而使一部分能量以热能的形式散发形成能量损失。在边界条件不发生变化的管段上,流动阻力只有沿程不变的摩擦力
19、或切应力,称为沿程阻力;克服沿程阻力而造成的能量损失,称为沿程损失。流动阻力和流动损失2.局部阻力和局部损失流体在流动过程中,当流经如三通、弯头、阀门等管道中管件和附件时,对流体形成局部障碍,流体的流动状况发生急剧变化。在边界条件发生急剧变化的区域,由于出现了漩涡区和速度分布的改组,则形成集中的阻力,这种阻力称为局部阻力;克服局部阻力而造成的能量损失,称为局部损失。流动阻力和流动损失3.能量损失的计算公式工程中常用的能量损失的计算公式为:沿程损失hl (1.18)局部损失hj(1.19)式中:L管长(m);d 管径(m);v 断面平均流速(m/s)(对局部损失来讲,为局部阻力损失过后的流速);
20、g 重力加速度(m/s);沿程阻力系数;局部阻力系数。由此可知,流体流动过程中的总的能量损失,等于各计算管段的沿程损失与局部损失之和,即hhlhj流动阻力和流动损失【例1.3】如图1.7所示,若蓄水池至用水设备的输水管的总长度为30m,输水管道的直径均为100mm,沿程阻力系数为0.042,局部阻力有:水泵底阀一个,7.0;90弯头4个,1.0;水泵进出口一个,1.0;止回阀一个,1.5;闸阀2个,0.5;用水设备处管道出口一个,1.0。试求:1)输水管道的沿程损失。2)输水管道的局部损失。3)输水管道的总水头损失。4)确定水泵的扬程。流动阻力和流动损失【解】1)由于从蓄水池至用水设备的管道的
21、管径不变,均为100mm,因此总的沿程损失为hl 0.042300.12.89(m)2)局部水头损失为hj,(7.01.041.01.51.01.0)15.50.233.57(m)3)总的水头损失为h2.893.576.46(m)4)水泵的扬程为hb25.52h25.526.4631.98(m)1.2传热学的基本知识传热学是研究热量传递过程规律的一门科学。我们在设备工程中所涉及的传热学的知识,主要是为了学习供暖工程打基础。在供暖工程中,供暖热负荷的确定需要计算围护结构的传热量,建筑物的围护结构传热主要是通过外墙、外窗、外门、顶棚和地面。1.2传热学的基本知识在这些围护结构的热量传递过程中要经历
22、三个阶段(如图1.8所示),以外墙的热量传递过程为例:1)热量由室内空气以对流换热和物体间的辐射换热的方式传给墙壁的内表面。2)墙壁的内表面以固体导热的方式传递到墙壁外表面。3)墙壁外表面以对流换热和物体间辐射换热的方式把热量传递给室外环境。图1.8冷热流体间的传热过程1.2传热学的基本知识显然,在其他条件不变时,室内外温差越大,传热量越大。又如散热器内热媒的传热过程,同样经历三个阶段,热媒的热量以对流换热方式传到散热器壁内侧,再以导热方式传递到壁外侧,然后壁外侧以对流换热和物体间辐射换热的方式传给室内。从以上的例子可以看到,整个的传热过程实际上是由导热、对流、辐射三种基本的传热方式组成。因此
23、要研究整个传热过程的规律,首先对三种基本的传热方式的传热规律进行分析。1.2传热学的基本知识导热对流热辐射传热过程导热导热是指物体各部分无相对位移或不同物体直接接触时依靠物质分子、原子及自由电子等微观粒子的热运动而进行的热量传递现象。在地球引力范围内,单纯的导热只能发生在密实的固体中。在导热过程中,导热的热流量与壁两侧的温差成正比,与壁的厚度成反比,并与材料的导热性能有关。导热其基本的计算式为QtF (1.20)或qt (1.21)式中:Q热流量(W);q 热流通量(W/m2);导热系数,它反映材料导热能力的大小W/(m);壁厚(m);t 壁两侧的温差();F 壁面积(m2)。导热以上就是导热
24、的热流量的计算公式。在传热分析中,常常用到电学中欧姆定律的形式,即 电流 I电位差E/电阻R以此形式把热流量的计算公式改写为热流量Q温度差t/热阻R (1.22)在导热中,为了区分导热热阻和后面的对流换热热阻及传热热阻,导热热阻用R 表示,可以得出Q(1.23)式中:R导热热阻,则平壁的导热热阻R(/W),对于单位面积,导热热阻为/(m/W)。利用热阻概念分析传热问题,是传热学中普遍使用的方法。对流对流对流是依靠流体的运动,把热量由一处传递到另一处。与导热一样,其也是传热的一种基本方式。但工程实际中所遇到的传热问题,例如在传热的三个阶段中的第一个阶段和第三个阶段,往往是流体与固体壁面接触时的换
25、热,在这种情况下,换热过程就不单有流体的对流作用,同时伴随着导热,我们把导热和对流共同存在的过程,称为对流换热过程。对流对流对流换热过程是一个受许多因素影响的复杂过程,其基本的计算式为Q(twtf)F (1.24)或q(twtf)(1.25)式中:tw固体壁表面温度();tf 流体温度();换热系数,其意义是指1m2壁面积上,当流体与 壁 之 间 的 温 差 为 1时,每 秒 钟 所 传 递 的 热 量W/(m2)。同样如果利用热阻的概念,对流换热过程的热阻用R来表示,则式(1.24)可写成Q(1.26)其中对流换热热阻R(/W),对于单位面积,换热热阻为1/(m2/W)。热辐射通过以上对导热
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 建筑设备 工程 基本知识
限制150内