数列练习题(共9页).doc
《数列练习题(共9页).doc》由会员分享,可在线阅读,更多相关《数列练习题(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数列基础知识点总结及训练A、1概念与公式:等差数列:1.定义:若数列称等差数列; 2.通项公式: 3.前n项和公式:公式:等比数列:1.定义若数列(常数),则称等比数列;2.通项公式:3.前n项和公式:当q=1时2简单性质:首尾项性质:设数列1.若是等差数列,则2.若是等比数列,则中项及性质:1.设a,A,b成等差数列,则A称a、b的等差中项,且2.设a,G,b成等比数列,则G称a、b的等比中项,且设p、q、r、s为正整数,且1. 若是等差数列,则 2. 若是等比数列,则顺次n项和性质:1.若是公差为d的等差数列,组成公差为n2d的等差数列;2. 若是公差为q的等比数
2、列,组成公差为qn的等比数列.(注意:当q=1,n为偶数时这个结论不成立)若是等比数列,则顺次n项的乘积:组成公比这的等比数列.若是公差为d的等差数列,1.若n为奇数,则而S奇、S偶指所有奇数项、所有偶数项的和);2.若n为偶数,则(二)学习要点:1学习等差、等比数列,首先要正确理解与运用基本公式,注意公差d0的等差数列的通项公式是项n的一次函数an=an+b;公差d0的等差数列的前n项和公式项数n的没有常数项的二次函数Sn=an2+bn;公比q1的等比数列的前n项公式可以写成“Sn=a(1-qn)的形式;诸如上述这些理解对学习是很有帮助的.2解决等差、等比数列问题要灵活运用一些简单性质,但所
3、用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3巧设“公差、公比”是解决问题的一种重要方法,例如:三数成等差数列,可设三数为“a,a+m,a+2m(或a-m,a,a+m)”三数成等比数列,可设三数为“a,aq,aq2(或,a,aq)”四数成等差数列,可设四数为“”四数成等比数列,可设四数为“”等等;类似的经验还很多,应在学习中总结经验. 由递推公式求通项公式的方法一、型数列,(其中不是常值函数) 此类数列解决的办法是累加法,具体做法是将通项变形为,从而就有将上述个式子累加,变成,进而求解。例1. 在数列中,解:依题意有逐项累加有,从而。二、型数列,(其中不是常值函数)此类数列解决
4、的办法是累积法,具体做法是将通项变形为,从而就有将上述个式子累乘,变成,进而求解。例2. 已知数列中,求的通项公式。解:当时,将这个式子累乘,得到,从而,当时,所以。三、型数列此类数列解决的办法是将其构造成一个新的等比数列,再利用等比数列的性质进行求解,构造的办法有两种,一是待定系数法构造,设,展开整理,比较系数有,所以,所以是等比数列,公比为,首项为。二是用作差法直接构造,,,两式相减有,所以是公比为的等比数列。例3. 在数列中,当时,有,求的通项公式。解法1:设,即有对比,得,于是得,即所以数列是以为首项,以3为公比的等比数列 则。解法2:由已知递推式,得, 上述两式相减,得,即因此,数列
5、是以为首项,以3为公比的等比数列。所以,即,所以。四、型数列(p为常数)此类数列可变形为,则可用累加法求出,由此求得.例4已知数列满足,求. 解:将已知递推式两边同除以得,设,故有,,从而.例5已知数列满足解:作,则,代入已知递推式中得:.令 这时且显然,所以.五、型数列(为非零常数)这种类型的解法是将式子两边同时取倒数,把数列的倒数看成是一个新数列,便可顺利地转化为型数列。例6已知数列满足,求.解:两边取倒数得:,所以,故有。六、型数列(为常数)这种类型的做法是用待定糸数法设构造等比数列。例7数列中,且,求.C、求数列前项和一. 公式法: 利用下列常用求和公式求和是数列求和的最基本最重要的方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 练习题
限制150内