平面问题基本理论1.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《平面问题基本理论1.ppt》由会员分享,可在线阅读,更多相关《平面问题基本理论1.ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 Every elastic body is spatial and,in general,Every elastic body is spatial and,in general,every external force system is spatial.every external force system is spatial.Hence,Hence,strictly speaking,any elasticity problem is strictly speaking,any elasticity problem is a spatial problem.a spatial pro
2、blem.For its solution,we have to For its solution,we have to consider all the components of stress,strain and consider all the components of stress,strain and displacement.displacement.However,if the body has aHowever,if the body has a particular shapeparticular shape and the external forces areand
3、the external forces are distributed in a particulardistributed in a particular manner,we may manner,we may consider the spatial problem as a plane one consider the spatial problem as a plane one and neglect some of the components.and neglect some of the components.This This will greatly simplify the
4、 mathematical will greatly simplify the mathematical aspect of solution while the results may aspect of solution while the results may still be applied in engineering design with still be applied in engineering design with sufficient accuracy.sufficient accuracy.2 2 Theory of Plane ProblemsTheory of
5、 Plane Problems21 21 Plane Stress and Plane StrainPlane Stress and Plane Strain22 22 Differential Equations of EquilibriumDifferential Equations of Equilibrium2323 Geometrical Equations.Rigid-body DisplacementGeometrical Equations.Rigid-body Displacement24 24 Physical EquationsPhysical Equations25 2
6、5 Stress at a PointStress at a Point26 26 Boundary Conditions.Boundary Conditions.Saint-Saint-VenantVenants Principles Principle27 27 Solution of Plane Problem in Terms of DisplacementsSolution of Plane Problem in Terms of Displacements28 28 Solution of Plane Problem in Terms of StressesSolution of
7、Plane Problem in Terms of Stresses29 29 Case of Constant Body Forces.Stress FunctionCase of Constant Body Forces.Stress Function 第二章第二章 平面问题的基本理论平面问题的基本理论21 21 平面应力问题与平面应变问题平面应力问题与平面应变问题22 22 平衡微分方程平衡微分方程23 23 几何方程几何方程 刚体位移刚体位移24 24 物理方程物理方程25 25 平面问题中一点的应力状态平面问题中一点的应力状态26 26 边界条件边界条件 圣维南原理圣维南原理27 2
8、7 按位移求解平面问题按位移求解平面问题28 28 按应力求解平面问题按应力求解平面问题 相容方程相容方程29 29 常体力情况下的简化常体力情况下的简化 应力函数应力函数21 21 Plane Stress and Plane StrainPlane Stress and Plane Strain空间问题空间问题 平面问题平面问题 转转 化化 平面应力问题平面应力问题平面应变问题平面应变问题Spatial problemSpatial problemPlane problemPlane problemPlane stress problemPlane stress problemPlane
9、strain problemPlane strain problem转化条件:转化条件:构件的形状构件的形状 荷载性质荷载性质Particular shapeParticular shapeParticular forcesParticular forces一、平面应力问题一、平面应力问题Plane Stress Plane Stress 1 1、构件的形状:、构件的形状:薄板:薄板:t t其它两个方向的尺寸其它两个方向的尺寸xyozoytThin Plate of Thin Plate of uniform thickness tuniform thickness t2 2、荷载的性质:、荷
10、载的性质:面力面力:沿板边,平行于板面,沿厚度不变:沿板边,平行于板面,沿厚度不变体力体力:平行于板面,沿厚度均布:平行于板面,沿厚度均布xyozoytAll the forces being parallel to the All the forces being parallel to the faces of the plate and distributed faces of the plate and distributed uniformly over the thicknessuniformly over the thickness板面不受力,即:板面不受力,即:z z z=+t
11、/2z=+t/2=0=0结论结论:zxzx z=+t/2z=+t/2=0 =0 zyzy z=+t/2z=+t/2=0 =0 因为板很薄,荷载不沿厚度变化,应力是连续因为板很薄,荷载不沿厚度变化,应力是连续分布的,所以可以认为,在整个薄板:分布的,所以可以认为,在整个薄板:z z=0 =0 zxzx=0 =0 zyzy=0=0 平面应力问题有那些应变分量和位移分量平面应力问题有那些应变分量和位移分量?薄板的应力为薄板的应力为:x x y y xyxy 且与且与z z无关,无关,为为x x、y y的函数的函数,称为平面应力问题称为平面应力问题The remaining stress compon
12、ents The remaining stress components x x,y y,xyxy,may be considered to be functions of xmay be considered to be functions of x、y y onlyonly,such a problem is called such a problem is called a plane a plane stress problem.stress problem.二、平面应变问题二、平面应变问题Plane Plane StrianStrian1 1、构件的形状:、构件的形状:yzx(1 1
13、)足够长柱体,两端光滑刚性约束足够长柱体,两端光滑刚性约束(2 2)无限长柱体,两端自由无限长柱体,两端自由Very long cylindrical or Very long cylindrical or prismatial prismatial bodybody2 2、荷载的性质:、荷载的性质:(1 1)平行于横截面平行于横截面(2 2)沿长度不变沿长度不变(任意横截面上任意横截面上的受力是相同的)的受力是相同的)All the forces being parallel to a cross section of All the forces being parallel to a c
14、ross section of the body and not varying along the axial direction.the body and not varying along the axial direction.称为平面应变问题称为平面应变问题结论:结论:yzx平面应变问题平面应变问题有那些应力分有那些应力分量?量?(1 1)应力、应变只是应力、应变只是x x、y y的函数的函数()()w=0w=0(z z),),应变应变分量只有分量只有 x x y y xyxyWith any cross section of the body as With any cross s
15、ection of the body as xy xy plane,the plane,the components will be functions of xcomponents will be functions of x、y onlyy only,due to due to symmetry,the shearing stresses symmetry,the shearing stresses zxzx=0,=0,zyzy=0,=0,and and w=0w=0,such a problem is called such a problem is called a plane str
16、ain problem.a plane strain problem.归纳:归纳:平面问题中,共有八个未知量:平面问题中,共有八个未知量:x x y y xy xy x x y y xyxy u uv v求解弹性力学平面问题,就是要求解弹性力学平面问题,就是要根据根据已知条件已知条件(荷载,边界条件)(荷载,边界条件)求未知求未知的应力分量、应变分量和位移分量。的应力分量、应变分量和位移分量。xyO取图示微六面取图示微六面体为隔离体,体为隔离体,厚度厚度 t=1t=1Isolate elementIsolate element2 2 平衡微分方程(静力平衡条件)平衡微分方程(静力平衡条件)y
17、yx xy xcXYDifferential Equations of EquilibriumDifferential Equations of Equilibrium建立平衡方程建立平衡方程Formulate Equilibrium EquationsFormulate Equilibrium Equations y yx xy xXYxyoXYc M MC C=0 =0 (1 1)xyxy=yxyx X=0 X=0 (2 2)Y=0 Y=0 (3 3)(平面应力(平面应力问题与平面问题与平面应变问题)应变问题)The elasticity problem is statically ind
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 问题 基本理论
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内