同济六版高等数学第八章第三节.ppt
《同济六版高等数学第八章第三节.ppt》由会员分享,可在线阅读,更多相关《同济六版高等数学第八章第三节.ppt(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、曲面方程的概念二、旋转曲面三、柱面7.3 曲面及其方程上页下页铃结束返回首页四、二次曲面上页下页铃结束返回首页一、曲面方程的概念 在空间解析几何中 任何曲面都可以看作点的几何轨迹那么 方程F(x y z)0就叫做曲面S的方程 而曲面S就叫做方程F(x y z)0的图形 (1)曲面S上任一点的坐标都满足方程F(x y z)0 (2)不在曲面S上的点的坐标都不满足方程F(x y z)0v曲面方程的定义 如果曲面S与三元方程 F(x y z)0有下述关系:下页上页下页铃结束返回首页 例1 建立球心在点M0(x0 y0 z0)、半径为R的球面的方程 解 设M(x y z)是球面上的任一点 那么|M
2、0M|R 或 (xx0)2(yy0)2(zz0)2R2 因为球面上的点的坐标一定满足上述方程 而不在球面上的点的坐标都不满足这个方程 所以上述方程就是所求的球面的方程下页上页下页铃结束返回首页 例2 设有点A(1 2 3)和B(2 1 4)求线段AB的垂直平分面的方程 由题意知道 所求的平面就是与A和B等距离的点的几何轨迹 设M(x y z)为所求平面上的任一点 则有|AM|BM|等式两边平方 然后化简得 2x6y2z70 这就是所求的平面的方程下页 解 上页下页铃结束返回首页 (1)已知一曲面作为点的几何轨迹时 建立这曲面的方程 (2)已知坐标x、y和z间的一个方程时 研究这方程所表示的曲面
3、的形状 v研究曲面的两个基本问题 通过配方 原方程可以改写成 (x1)2(y2)2z25 一般地 三元二次方程 Ax2Ay2Az2DxEyFzG0的图形就是一个球面 首页 例3 方程x2y2z22x4y0表示怎样的曲面?解 上页下页铃结束返回首页二、旋转曲面 以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面叫做旋转曲面 这条定直线叫做旋转曲面的轴 下页例如例如:上页下页铃结束返回首页建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:故旋转曲面方程为当绕 z 轴旋转时,若点给定 yoz 面上曲线 C:则有则有该点转到上页下页铃结束返回首页下页提问:曲线f(y z)0绕y轴旋转所成的旋转曲面
4、的方程是什么?上页下页铃结束返回首页 例4 试建立顶点在坐标原点O 旋转轴为z轴 半顶角为的圆锥面的方程 解 在坐标面yOz内 与z轴夹角为的直线的方程为zycot 或 z2a2(x2y2)这就是所求的圆锥面的方程 其中acot 下页 曲线f(y z)0绕 z 轴旋转所得到的旋转曲面的方程为 上页下页铃结束返回首页绕 x 轴和 z 轴旋转所在的旋转曲面的方程分别为 解 旋转双叶双曲面旋转单叶双曲面首页轴旋转一周 求所生成的旋转曲面的方程 例5 上页下页铃结束返回首页三、柱面 在空间直角坐标系中 过xOy面上的圆x2y2R2作平行于z轴的直线l 则直线l上的点都满足方程x2y2R2 这说明直线l
5、 一定在x2y2R2表示的曲面上 例6 方程x2y2R2表示怎样的曲面?因此这个曲面可以看成是由平行于z轴的直线l沿xOy面上的圆x2y2R2移动而形成的 这曲面叫做圆柱面 xOy面上的圆x2y2R2叫做它的准线 这平行于z轴的直线l叫做它的母线 下页 解 上页下页铃结束返回首页 平行于定直线并沿定曲线C移动的直线L形成的轨迹叫做柱面 定曲线C叫做柱面的准线 动直线L叫做柱面的母线 v柱面 上面我们看到 不含z的方程x2y2R2在空间直角坐标系中表示圆柱面 它的母线平行于z轴 它的准线是xOy面上的圆x2y2R2 一般地 只含x、y而缺z的方程F(x y)0 在空间直角坐标系中表示母线平行于z
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同济 高等数学 第八 三节
限制150内