第六章从样本统计量估计总体参数.ppt
《第六章从样本统计量估计总体参数.ppt》由会员分享,可在线阅读,更多相关《第六章从样本统计量估计总体参数.ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六章第六章 从样本统计量估计从样本统计量估计 总体参数总体参数第一节 点估计第二节 区间估计 一、样本平均数的抽样分布 二、总体平均数的区间估计 从样本统计量估计或推断总体参数是推断统计的一个重要部分。我们在引入“样本”和“总体”这两个概念时看到,语言研究所涉及的总体往往非常大(甚至是无限大的),因而难以对其中所有个体都加以研究,研究者们所能做的只是通过随机的方法从总体中抽取一个具有代表性的样本加以研究,然后再从有关样本统计量来估计或推断未知的总休参数,例如从样本平均数来估计总体平均数。本章只讨论如何从样本平均数X和比 分别估计总体平均数 和比 。估计的方法有两种:点估计与区间估计。第一节
2、点估计 当总休平均数或比例未知时,我们可以直接把样本平均数或比例用作它的估计值。由于样本统计量为数轴上的一个点,所以称为“点估计值”。一个理想的点估计值至少应具备以下两个条件:(1)无偏性 一般情况下,样本统计量是不会和相应的总体参数完全相同的,两者多少都会有一定的差距,但是如果用无限多个样本的统计量来估计总体参数,平均估计误差将会等于0。具有这一特征的统计量就无偏估计值。例如,用样本平均数估计总体平均数时,总会有些误差,在有些样本中,它可能会大于总体平均数,而在另一些样本中它又可能会小于总体平均数,而且对于不同的样本估计误差的大小也是不同的,但是无限多个样本平均数的平均估计误差为0。换句话说
3、,样本平均数的平均数将会等于总体平均数。因而样本平均数是一个无偏点估计值(在第四章里,我们在讨论样本方差和标准差时曾经指出,公式中要用N-1 (而不能用N)做分母,就是要保证方差和标准差具有无偏性,因为用N做分母时,样本方差一般要小于总休的方差)。(2)一致性。样本容量越大,根据样本计算出的估计值越接近总体参数的真值。作为总休平均数的估计值,样本平均数就具有一致性。第二节 区间估计 即便是一个理想的点估计值,也无法克服点估计的一个致命缺陷,那就是它易受样本变化的影响:每次抽取的样本不同,得出的统计量也就不同,因而它所提供的参数估计值也就会不同。如果能把抽样所带来的这种变异性或不确定性考虑进去,
4、对总体参数的估计将会更有意义简而言之,区间估计就是为总体参数计算出一个可能的取值范围或值域,然后指出总体参数处在该值域的可能性有多大。一、样本平均数的抽样分布 假如有一个变量的总体(至于何种总体无关紧要),我们从中随机抽取取一个含有若干个观测值的样本(记作 S1),计算出样本平均数(记作X1),然后把所抽取的观测值再放回总体。按照此法,再抽取样本S2,得样本平均数X2 ,等等。从理论上讲,我们可以无限次地重复这一过程,抽取n 个样本,计算出 n个样本平均数。正如我们可以为观测值绘制分布图那样,我们也可以为这些样本平均数绘制分布图(为了便于理解,不妨把这些平均数看作观测值),这个分布就叫做平均数
5、的抽样分布。1.(渐近)正态分布 平均数的抽样分布的形态取决于总体的分布和总体方差是否已知,以及样本容量的大小:当总体的分布为正态,总体方差 已知时,样本平均数的分布为正态分布;当总体的分布为非正态,总体方差 已知时,如果样本较大,则样本平均数的分布接近正态分布,其样本越大,总体偏 接近的程度取决于样本容量以及总体的偏斜程度斜程度越轻,两者就越接近。这一现象叫做“中心极限定理”。当样本平均数的分布为正态或渐近正态时,分布的平均数与总体平均数相等,而分布的离散程度则小于总休的离散程度。如果横轴上的测量单位相同,那么总体的分布形态较为平阔,而样本平均数的分布则较为尖狭。不过,如前所述,一个呈正态分
6、布的变量可以通过求标准分的方法,转换为标准正态变量(见第五章),我们也可以用此方法把每个样本平均数转换为标准分,进而把正态的样本平均数的抽样分布转换为标准正态分布,公式为 样本平均数分布的离散程度是用样本平均数的抽样分布的标准差来表示的。为了与样本标准差区别开来,抽样分布的标准差习惯上称作“标准误”,用符号SE表示。标准误与样本容量(N)以及总体的标准差 有关,即 也就是说,标准误与总体标准差的大小成正比,与样本的大小成反比(严格来说是与样本大小的开方成反比,因此在总休标准差一定时,为了使标准误减少一半,就必须使样本容量扩大四倍)。2.t分布 前面讲的是样本平均数呈正态分布或接近正态分布的情况
7、。此外,还有两种情况:一是总体分布为正态,但总体方差 未知,且样本容量又较小;二是总休分布为非正态,而且总体方差 未知,样本容量又较小。在这些情况下,样木平均数的分布为t分布这是因为总体力一差末知,在计算 这一比率时,要用样本标准差S取代 ,但是在样本较小的情况下,样本方差差S2作为总体方差 的估计值并不是很准确的,这时 不再呈正态分布,而是呈“t分布”,因而该比率也就不再称作Z值,而是t值。t分布在某些方面与正态分布是一样的,譬如它的平均值为0,平均值两侧是对称的,左侧t为负值,右侧为正值。但是不同的是,t分布的方差要大于(标准)正态分布的方差(即大于1),因而与正态分布相比,t分布的中间要
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第六 样本 统计 估计 总体 参数
限制150内