数学建模中的优化模型.ppt
《数学建模中的优化模型.ppt》由会员分享,可在线阅读,更多相关《数学建模中的优化模型.ppt(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、简要提纲1.优化模型简介2.简单的优化模型3.数学规划模型 4.图论,动态规划(选讲)5.建模与求解实例1.优化模型简介优化问题的一般形式无约束优化:最优解的分类和条件约束优化的简单分类优化建模如何创新?方法1:大胆创新,别出心裁-采用有特色的目标函数、约束条件等-你用非线性规划,我用线性规划-你用整数/离散规划,我用连续规划/网络优化-方法2:细致入微,滴水不漏-对目标函数、约束条件处理特别细致-有算法设计和分析,不仅仅是简单套用软件-敏感性分析详细/全面-建模时需要注意的几个基本问题1、尽量使用实数优化,减少整数约束和整数变量2、尽量使用光滑优化,减少非光滑约束的个数如:尽量少使用绝对值、
2、符号函数、多个变量求最大/最小值、四舍五入、取整函数等3、尽量使用线性模型,减少非线性约束和非线性变量的个数(如x/y 5 改为x 640g=0.1敏感性分析敏感性分析研究研究 r,g变化时对模型结果的影响变化时对模型结果的影响 估计估计r=2,g=0.1 设设g=0.1不变不变 t 对对r 的(相对)敏感度的(相对)敏感度 生猪每天体重增加量生猪每天体重增加量r 增加增加1%,出售时间推迟,出售时间推迟3%。rt敏感性分析敏感性分析估计估计r=2,g=0.1研究研究 r,g变化时对模型结果的影响变化时对模型结果的影响 设设r=2不变不变 t 对对g的(相对)敏感度的(相对)敏感度 生猪价格每
3、天的降低量生猪价格每天的降低量g增加增加1%,出售时间提前,出售时间提前3%。gt强健性分析强健性分析保留生猪直到利润的增值等于每天的费用时出售保留生猪直到利润的增值等于每天的费用时出售由由 S(t,r)=3建议过一周后建议过一周后(t=7)重新估计重新估计 ,再作计算。再作计算。研究研究 r,g不是常数时对模型结果的影响不是常数时对模型结果的影响 w=80+rt w=w(t)p=8-gt p=p(t)若若 (10%),则则 (30%)每天利润的增值每天利润的增值 每天投入的资金每天投入的资金 3.数学规划模型 例例1 汽车厂生产计划汽车厂生产计划例例2 加工奶制品的生产计划加工奶制品的生产计
4、划例例3 运输问题运输问题 如果生产某一类型汽车,则至少要生产如果生产某一类型汽车,则至少要生产8080辆,辆,那么最优的生产计划应作何改变?那么最优的生产计划应作何改变?例例1 汽车厂生产计划汽车厂生产计划 汽车厂生产三种类型的汽车,已知各类型每辆车对汽车厂生产三种类型的汽车,已知各类型每辆车对钢材、劳动时间的需求,利润及工厂每月的现有量钢材、劳动时间的需求,利润及工厂每月的现有量.小型小型 中型中型 大型大型 现有量现有量钢材(吨)钢材(吨)1.5 3 5 600劳动时间(小时)劳动时间(小时)280 250 400 60000利润(万元)利润(万元)2 3 4 制订月生产计划,使工厂的利
5、润最大制订月生产计划,使工厂的利润最大.设每月生产小、中、大型设每月生产小、中、大型汽车的数量分别为汽车的数量分别为x1,x2,x3汽车厂生产计划汽车厂生产计划 模型建立模型建立 小型小型 中型中型 大型大型 现有量现有量钢材钢材 1.5 3 5 600时间时间 280 250 400 60000利润利润 2 3 4 线性规划线性规划模型模型(LP)模型模型求解求解 3)模型中)模型中增加条件增加条件:x1,x2,x3 均为整数,重新求解均为整数,重新求解.Objective Value:632.2581 Variable Value Reduced Cost X1 64.516129 0.0
6、00000 X2 167.741928 0.000000 X3 0.000000 0.946237 Row Slack or Surplus Dual Price 2 0.000000 0.731183 3 0.000000 0.003226结果为小数,结果为小数,怎么办?怎么办?1)舍去小数舍去小数:取:取x1=64,x2=167,算出目标函数值,算出目标函数值 z=629,与,与LP最优值最优值632.2581相差不大相差不大.2)试试探探:如如取取x1=65,x2=167;x1=64,x2=168等等,计算函数值计算函数值z,通过比较可能得到更优的解,通过比较可能得到更优的解.但但必须检
7、验必须检验它们是否满足约束条件它们是否满足约束条件.为什么?为什么?IP可用可用LINGO直接求解直接求解整数规划整数规划(Integer Programming,简记简记IP)IP 的最优解的最优解x1=64,x2=168,x3=0,最优值,最优值z=632 max=2*x1+3*x2+4*x3;1.5*x1+3*x2+5*x3600;280*x1+250*x2+400*x360000;gin(x1);gin(x2);gin(x3);Global optimal solution found.Objective value:632.0000 Extended solver steps:0 T
8、otal solver iterations:3 Variable Value Reduced Cost X1 64.00000 -2.000000 X2 168.0000 -3.000000 X3 0.000000 -4.000000模型求解模型求解 IP 结果输出结果输出其中其中3个个子模型应子模型应去掉,然后去掉,然后逐一求解,比较目标函数值,逐一求解,比较目标函数值,再加上整数约束,得最优解:再加上整数约束,得最优解:方法方法1:分解为:分解为8个个LP子模型子模型 汽车厂生产计划汽车厂生产计划 若生产某类汽车,则至少生产若生产某类汽车,则至少生产8080辆,求生产计划辆,求生产计划.
9、x1,x2,x3=0 或或 80 x1=80,x2=150,x3=0,最优值,最优值z=610LINGO中中对对0-1变量的限定:变量的限定:bin(y1);bin(y2);bin(y3);方法方法2:引入引入0-1变量,化为整数规划变量,化为整数规划 M为大的正数为大的正数,本例可取本例可取1000 Objective Value:610.0000 Variable Value Reduced Cost X1 80.000000 -2.000000 X2 150.000000 -3.000000 X3 0.000000 -4.000000 Y1 1.000000 0.000000 Y2 1.
10、000000 0.000000 Y3 0.000000 0.000000 若生产某类汽车,则至少生产若生产某类汽车,则至少生产8080辆,求生产计划辆,求生产计划.x1=0 或 80 x2=0 或 80 x3=0 或 80最优解同前最优解同前 max=2*x1+3*x2+4*x3;1.5*x1+3*x2+5*x3600;280*x1+250*x2+400*x30;x2*(x2-80)0;x3*(x3-80)0;gin(x1);gin(x2);gin(x3);方法方法3:化为非线性规划化为非线性规划 非线性规划非线性规划(Non-Linear Programming,简记简记NLP)若生产某类汽
11、车,则至少生产若生产某类汽车,则至少生产8080辆,求生产计划辆,求生产计划.x1=0 或 80 x2=0 或 80 x3=0 或 80最优解同前最优解同前.一般地,整数规划和非一般地,整数规划和非线性规划的求解比线性线性规划的求解比线性规划困难得多,特别是规划困难得多,特别是问题规模较大或者要求问题规模较大或者要求得到全局最优解时得到全局最优解时.例例2 加工奶制品的生产计划加工奶制品的生产计划1桶桶牛奶牛奶 3公斤公斤A1 12小时小时 8小时小时 4公斤公斤A2 或或获利获利24元元/公斤公斤 获利获利16元元/公斤公斤 50桶牛奶桶牛奶 时间时间480小时小时 至多加工至多加工100公
12、斤公斤A1 制订生产计划,使每天获利最大制订生产计划,使每天获利最大 35元可买到元可买到1桶牛奶,买吗?若买,每天最多买多少桶牛奶,买吗?若买,每天最多买多少?可聘用临时工人,付出的工资最多是每小时几元可聘用临时工人,付出的工资最多是每小时几元?A1的获利增加到的获利增加到 30元元/公斤,应否改变生产计划?公斤,应否改变生产计划?每天:每天:问问题题1桶桶牛奶牛奶 3公斤公斤A1 12小时小时 8小时小时 4公斤公斤A2 或或获利获利24元元/公斤公斤 获利获利16元元/公斤公斤 x1桶牛奶生产桶牛奶生产A1 x2桶牛奶生产桶牛奶生产A2 获利获利 243x1 获利获利 164 x2 原料
13、供应原料供应 劳动时间劳动时间 加工能力加工能力 决策变量决策变量 目标函数目标函数 每天获利每天获利约束条件约束条件非负约束非负约束 线性线性规划规划模型模型(LP)时间时间480小时小时 至多加工至多加工100公斤公斤A1 50桶牛奶桶牛奶 每天每天基本基本模型模型模型分析与假设模型分析与假设 比比例例性性 可可加加性性 连续性连续性 xi对目标函数的对目标函数的“贡贡献献”与与xi取值成正比取值成正比 xi对约束条件的对约束条件的“贡贡献献”与与xi取值成正比取值成正比 xi对目标函数的对目标函数的“贡贡献献”与与xj取值无关取值无关 xi对约束条件的对约束条件的“贡贡献献”与与xj取值
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 中的 优化 模型
限制150内