数列的概念与简单的表示法一对一辅导讲义(共12页).docx
《数列的概念与简单的表示法一对一辅导讲义(共12页).docx》由会员分享,可在线阅读,更多相关《数列的概念与简单的表示法一对一辅导讲义(共12页).docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上教学目标1、理解数列的概念,了解通项公式的意义和分类2、能由通项公式求出数列的各项。反之能求出数列的前几项3、培养学生分析问题的能力及探索规律的能力重点、难点1、数列的概念;2、通项公式的意义和分类。考点及考试要求1、 数列的概念2、 数列的各项3、 数列的前几项教 学 内 容第一课时 数列的概念与简单的表示法知识点梳理课前检测1、下列说法正确的是 ( )A. 数列1,3,5,7可表示为 B. 数列1,0,与数列是相同的数列 C. 数列的第项是 D. 数列可以看做是一个定义域为正整数集的函数2、数列中,由给出的数之间的关系可知的值是( )A. 12 B. 15 C.
2、17 D. 183、已知数列的通项公式为,则3 ( )A. 不是数列中的项 B. 只是数列中的第2项 C. 只是数列中的第6项 D. 是数列中的第2项或第6项4、数列的通项公式为,则数列各项中最小项是 ( )A. 第4项 B. 第5项 C. 第6项 D. 第7项5、已知数列,则是它的 ( )A. 第22项 B. 第23项 C. 第24项 D. 第28项知识梳理知识点一:数列的概念 数列的定义:按一定顺序排列的一列数叫做数列.注意:数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出
3、现. 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项,第2项,第项,.其中数列的第1项也叫作首项。3. 数列的一般形式:,或简记为,其中是数列的第项知识点二:数列的分类1. 根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列无穷数列:项数无限的数列.例如数列1,2,3,4,5,6,是无穷数列2. 根据数列项的大小分:递增数列:从第2项起,每一项都大于它的前一项的数列。递减数列:从第2项起,每一项都小于它的前一项的数列。常数数列:各项相等的数列。摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列知识点三:数列
4、的通项公式与前项和1. 数列的通项公式如果数列的第项与之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. 如数列:的通项公式为();的通项公式为();的通项公式为();注意:(1)并不是所有数列都能写出其通项公式;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,; 它的通项公式可以是,也可以是.(3)数列通项公式的作用:求数列中任意一项;检验某数是否是该数列中的一项. (4)数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示2. 数列的前项和数列的前项逐个相加之和:;当时;当时,.故.知识点四:数列与函数的关系数列可以看
5、成以正整数集(或它的有限子集)为定义域的函数,当自变量从小到大依次取值时对应的一列函数值。反过来,对于函数,如果()有意义,那么我们可以得到一个数列,;通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项关于数列的一些问题常通过函数的相关知识方法解决,如:单调性,最值等.知识点五:数列的表示方法数列可看作特殊的函数,其表示也应与函数的表示法(解析式法、图象法、列表法)有联系1. 通项公式法(解析式法):如果数列的第项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。2. 图象法:数列是一种特殊的函数,可以用函数图
6、象的画法画数列的图形具体方法是以项数为横坐标,相应的项为纵坐标,即以为坐标在平面直角坐标系中做出点。所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在轴的右侧,而点的个数取决于数列的项数从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势3. 列表法相对于列表法表示一个函数,数列有这样的表示法:用表示第一项,用表示第二项,用表示第项,依次写出成为,简记为4. 递推公式法递推公式:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式也是给出数列的一种方法。如数列:3,5,8,13,21
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 概念 简单 表示 一对一 辅导 讲义 12
限制150内