《垂径定理在生活中的应用》教学设计-中考数学一轮复习(浙教版).docx
《《垂径定理在生活中的应用》教学设计-中考数学一轮复习(浙教版).docx》由会员分享,可在线阅读,更多相关《《垂径定理在生活中的应用》教学设计-中考数学一轮复习(浙教版).docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、垂径定理在生活中的应用教案一、学习目标1.掌握垂径定理及其逆定理;2.会运用垂径定理解决一些实际生活中的线段长问题;3.探索并掌握用垂径定理求线段长度的一般方法.二、学习重难点重点:利用垂径定理求生活问题中线段的长.难点:分析实际生活问题情境,再利用垂径定理进行求解,是本节课的难点.三、学习过程:(一)问题背景问题1:一根排水管的横截面如图1所示(排水管的厚度忽略不计),管中有一些水,若已知排水管的半径长和水面宽,你能求水的最大深度吗?思考:求解这一问题需要探寻圆中哪些线段之间的关系呢?问题2:如图是一个圆弧形的桥拱的横截面与桥下水面宽的示意图,你知道怎样确定桥拱圆弧的半径吗?思考:可以量取哪
2、些相关线段,来求此圆弧的半径呢?生活中有很多与圆有关的求某些线段长的问题,你能想到能运用圆的哪些知识,运用怎样的方法来解决呢?【设计意图】以两个实际生活中涉及其圆中相关线段的问题来引入本节内容,激发学生的学习兴趣,直接引入课程的内容,让学生明白本节课解决什么问题.(二)问题探究1.复习回顾垂径定理。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.逆定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.逆定理2:平分弧的直径垂直平分弧所对的弦.几何语言叙述:如图2,垂径定理:已知O中,AB是直径,ABCD, 那么:CE=DE,CB=DB,AC=AD.逆定理1:已知O中,AB是直径
3、,CE=DE, 那么:ABCD,CB=DB,AC=AD.逆定理2:已知O中,AB是直径,CB=DB或AC=AD., 那么:ABCD,CE=DE.2.理清垂径定理涉及线段之间的关系.关键词:垂直 直径 双平分结构整理:如图3,由垂径定理或逆定理均能得到ABCD,若连结半径OC,存在RtOCE,可得半径、半弦长、弦心距之间的关系:OC2=CE2+OE2,这个 RtOCE可以定义为“双半Rt” .若已知半径、弦心距OE、弦长CD中任意两条,可以直接计算得到另一条;由BE=OB-OE,AE=OA+OE,也可得弦长CD,BE(或AE),半径之间的关系:半径2=半弦2+(半径-BE)2,已知其中任意两条,
4、可以计算得另一条线段.3.简单应用:一根排水管的横截面如图3所示(排水管的厚度忽略不计),已知排水管的半径AO=10,排水管中水面宽AB=12.(1)求圆心O到水面的距离OC. 解:由题意,OCAB,AC=BC=12AB=1212=6.由勾股定理,得OC=OA2AC2=10262=8. 【分析】已知半径和弦长,要求弦心距,可以依据垂径定理,由半径垂直弦,得弦被平分,在一个双半Rt三角形中,利用勾股定理求弦心距.(2)排水管中水的最大深度是多少?【分析】最大深度:等于半径减去弦心距.在第(1)问基础上可以继续来求解其他相关线段,并引导学生如何从题中文字信息转化为数学语言,再进一步借助图形找到几何
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中数学精品资料 中考数学精品专题 初中数学专题讲义 初中数学教学课件 初中数学学案 初中数学试卷 中考数学解题指导
限制150内