排列 教案--高二下学期数学人教A版(2019)选择性必修第三册.docx
《排列 教案--高二下学期数学人教A版(2019)选择性必修第三册.docx》由会员分享,可在线阅读,更多相关《排列 教案--高二下学期数学人教A版(2019)选择性必修第三册.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六章 计数原理6.2.1 排列教学设计一、教学目标1. 通过具体实例,理解排列的概念;2. 能用列举法、树状图法列出简单的排列;3. 能运用排列的相关知识解一些简单的排列应用题.二、教学重难点1、教学重点理解排列的定义. 2、教学难点运用排列解决问题.三、教学过程(一)新课导入教师:上节课学习了分类加法计数原理与分步乘法计数原理,但是在解决问题时,我们发现有时会因做了一些重复性工作而显得烦琐.那么能否对这类计数问题给出一种简捷的方法呢?先来分析两个实例.(二)探索新知探究一:运用排列解决问题思考1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活
2、动,有几种不同的选法?此时,要完成的一件事是“选出2名同学参加活动,1名同学参加上午的活动,另1名同学参加下午的活动”,可以分两个步骤:第1步,确定参加上午活动的同学,从3人中任选1人,有3种选法;第2步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从剩下的2人中去选,有2种选法.根据分步乘法计数原理,不同的选法种数为.这6种不同的选法如图所示.如果把上面问题中被取出的对象叫做元素,那么问题可叙述为:从3个不同的元素中任意取出2个,并按一定的顺序排成一列,共有多少种不同的排列方法?所有不同的排列是,不同的排列方法种数为.思考2: 从1,2,3,4这4个数字中,每次
3、取出3个排成一个三位数,共可得到多少个不同的三位数?显然,从4个数字中,每次取出3个,按“百位、十位、个位”的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数.可以分三个步骤来解决这个问题:第1步,确定百位上的数字,从1,2,3,4这4个数字中任取1个,有4种方法;第2步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的3个数字中去取,有3种方法;第3步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下的2个数字中去取,有2种方法.根据分步乘法计数原理,从1,2,3,4这4个不同的数字中,每次取出3个数字,按“百位、十位、个位”
4、的顺序排成一列,不同的排法种数为.因而共可得到24个不同的三位数,如图所示.由此可写出所有的三位数:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432.同样,问题2可以归结为:从4个不同的元素中任意取出3个,并按照一定的顺序排成一列,共有多少种不同的排列方法?所有不同的排列是.不同的排列方法种数为.探究二:排列的定义思考1和思考2都是研究从一些不同元素中取出部分元素,并按照一定的顺序排成一列的方法数.一般地,从个不同元素中取出个元素,并按照一定的顺序排成一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学精品资料 新高考数学精品专题 高考数学压轴冲刺 高中数学课件 高中数学学案 高一高二数学试卷 数学模拟试卷 高考数学解题指导
限制150内