高一数学函数知识点总结归纳.docx
《高一数学函数知识点总结归纳.docx》由会员分享,可在线阅读,更多相关《高一数学函数知识点总结归纳.docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 高一数学函数知识点总结归纳高一数学函数学问点总结归纳1 一:函数及其表示 学问点详解文档包含函数的概念、映射、函数关系的推断原则、函数区间、函数的三要素、函数的定义域、求详细或抽象数值的函数值、求函数值域、函数的表示方法等 1. 函数与映射的区分: 2. 求函数定义域 常见的用解析式表示的函数f(x)的定义域可以归纳如下: 当f(x)为整式时,函数的定义域为R. 当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。 当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。 当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。 假如f(x)是由几个
2、局部的”数学式子构成的,那么函数定义域是使各局部式子都有意义的实数集合,即求各局部有意义的实数集合的交集。 复合函数的定义域是复合的各根本的函数定义域的交集。 对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。 3. 求函数值域 (1)、观看法:通过对函数定义域、性质的观看,结合函数的解析式,求得函数的值域; (2)、配方法;假如一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域; (3)、判别式法: (4)、数形结合法;通过观看函数的图象,运用数形结合的方法得到函数的值域; (5)、换元法;以新变量代替函
3、数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域; (6)、利用函数的单调性;假如函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域; (7)、利用根本不等式:对于一些特别的分式函数、高于二次的函数可以利用重要不等式求出函数的值域; (8)、最值法:对于闭区间a,b上的连续函数y=f(x),可求出y=f(x)在区间a,b内的极值,并与边界值f(a).f(b)作比拟,求出函数的最值,可得到函数y的值域; (9)、反函数法:假如函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。 高一数学函数学问点总结归纳2 一、函数的概念与表示 1
4、、映射 (1)映射:设A、B是两个集合,假如根据某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:AB。 留意点:(1)对映射定义的理解。(2)推断一个对应是映射的方法。一对多不是映射,多对一是映射 2、函数 构成函数概念的三要素 定义域对应法则值域 两个函数是同一个函数的条件:三要素有两个一样 二、函数的解析式与定义域 1、求函数定义域的主要依据: (1)分式的分母不为零; (2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必需大于零; (4)指数函数和对
5、数函数的底数必需大于零且不等于1; 三、函数的值域 1求函数值域的方法 直接法:从自变量x的范围动身,推出y=f(x)的取值范围,适合于简洁的复合函数; 换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; 判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且R的分式; 分别常数:适合分子分母皆为一次式(x有范围限制时要画图); 单调性法:利用函数的单调性求值域; 图象法:二次函数必画草图求其值域; 利用对号函数 几何意义法:由数形结合,转化距离等求值域。主要是含肯定值函数 四.函数的奇偶性 1.定义:设y=f(x),xA,假如对于任意A,都有,则称y
6、=f(x)为偶函数。 假如对于任意A,都有,则称y=f(x)为奇 函数。 2.性质: y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称, 若函数f(x)的定义域关于原点对称,则f(0)=0 奇奇=奇偶偶=偶奇奇=偶偶偶=偶奇偶=奇两函数的定义域D1,D2,D1D2要关于原点对称 3.奇偶性的推断 看定义域是否关于原点对称看f(x)与f(-x)的关系 五、函数的单调性 1、函数单调性的定义: 2、设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性一样,则在M上是增函数。 高一数学函数学问点总结
7、归纳3 【(一)、映射、函数、反函数】 1、对应、映射、函数三个概念既有共性又有区分,映射是一种特别的对应,而函数又是一种特别的映射. 2、对于函数的概念,应留意如下几点: (1)把握构成函数的三要素,会推断两个函数是否为同一函数. (2)把握三种表示法列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特殊是会求分段函数的解析式. (3)假如y=f(u),u=g(x),那么y=fg(x)叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数. 3、求函数y=f(x)的反函数的一般步骤: (1)确定原函数的值域,也就是反函数的定义域; (2)由y=f(x)的解析式求出x=f-1(
8、y); (3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域. 留意:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起. 熟识的应用,求f-1(x0)的值,合理利用这个结论,可以避开求反函数的过程,从而简化运算. 【(二)、函数的解析式与定义域】 1、函数及其定义域是不行分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必需是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型: (1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑; (2)已知一个函数的解析式求其定义域,只要
9、使解析式有意义即可.如: 分式的分母不得为零; 偶次方根的被开方数不小于零; 对数函数的真数必需大于零; 指数函数和对数函数的底数必需大于零且不等于1; 三角函数中的正切函数y=tanx(xR,且kZ),余切函数y=cotx(xR,xk,kZ)等. 应留意,一个函数的解析式由几局部组成时,定义域为各局部有意义的自变量取值的公共局部(即交集). (3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可. 已知f(x)的定义域是a,b,求fg(x)的定义域是指满意ag(x)b的x的取值范围,而已知fg(x)的定义域a,b指的是xa,b,此时f(x)的定义域,即g(x)的值域.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 函数 知识点 总结 归纳
限制150内