高中数学必修3教案人教版高中数学必修三教案(五篇).docx
《高中数学必修3教案人教版高中数学必修三教案(五篇).docx》由会员分享,可在线阅读,更多相关《高中数学必修3教案人教版高中数学必修三教案(五篇).docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 高中数学必修3教案人教版高中数学必修三教案(五篇)高中数学必修3教案 人教版高中数学必修三教案篇一 1、了解函数的单调性和奇偶性的概念,把握有关证明和判定的根本方法。 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。 (2)能从数和形两个角度熟识单调性和奇偶性。 (3)能借助图象判定一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。 2、通过函数单调性的证明,提高学生在代数方面的推理论证力量;通过函数奇偶性概念的形成过程,培育学生的观看,归纳,抽象的力量,同时渗透数形结合,从非凡到一般的数学思想。
2、 3、通过对函数单调性和奇偶性的理论讨论,增学生对数学美的体验,培育乐于求索的精神,形成科学,严谨的讨论态度。 一、学问构造 (1)函数单调性的概念。包括增函数。减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。 (2)函数奇偶性的概念。包括奇函数。偶函数的定义,函数奇偶性的判定方法,奇函数。偶函数的图像。 二、重点难点分析 (1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟识。教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证明。 (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观看图象的上升与下降,而现在要求把它上升到理
3、论的高度,用精确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比拟困难的,因此要在概念的形成上重点下功夫。单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的力量是比拟弱的,很多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点。 三、教法建议 (1)函数单调性概念引入时,可以先从学生熟识的一次函数,二次函数。反比例函数图象动身,回忆图象的增减性,从这点感性熟识动身,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来
4、解释,引导学生发觉自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟识就可以融入其中,将概念的形成与熟识结合起来。 (2)函数单调性证明的步骤是严格规定的,要让学生根据步骤去做,就必需让他们明确每一步的必要性,每一步的目的,非但凡在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮忙学生总结规律。函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观看对应的函数值的变化规律,先从详细数值开头,渐渐让在数轴上动起来,观看任意性,再让学生
5、把看到的用数学表达式写出来。经受了这样的过程,再得到等式时,就比拟轻易体会它代表的是很多多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进展屡次改动,帮忙学生发觉定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。 高中数学必修3教案 人教版高中数学必修三教案篇二 1、使学生了解奇偶性的概念,回会利用定义判定简洁函数的奇偶性。 2、在奇偶性概念形成过程中,培育学生的观看,归纳力量,同时渗透数形结合和非凡到一般的思想方法。 3、在学生感受数学美的同时,激发学习的爱好,培育学生乐于求索的精神。 重点是奇偶性概念的形成与
6、函数奇偶性的判定 难点是对概念的熟识 投影仪,计算机 引导发觉法 一。引入新课 前面我们已经讨论了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今日我们连续讨论函数的另一共性质。从什么角度呢?将从对称的角度来讨论函数的性质。 对称我们大家都很熟识,在生活中有许多对称,在数学中也能发觉许多对称的问题,大家回忆一下在我们所学的内容中,非但凡函数中有没有对称问题呢? (学生可能会举出一些数值上的对称问题,等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数详细化,如和等。) 结合图象提出这些对称是我们在初中讨论的关于轴对称和关于原点对称问题,而我们还曾讨论过关于轴
7、对称的问题,你们举的例子中还没有这样的,能举出一个函数图象关于轴对称的吗? 学生经过思索,能找出缘由,由于函数是映射,一个只能对一个,而不能有两个不同的,故函数的图象不行能关于轴对称。最终提出我们今日将重点讨论图象关于轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律。 二。讲解新课 2、函数的奇偶性(板书) 教师从刚刚的图象中选出,用计算机打出,指出这是关于轴对称的图象,然后问学生初中是怎样判定图象关于轴对称呢?(由学生答复,是利用图象的翻折后重合来判定)此时教师明确提出讨论方向:今日我们将从数值角度讨论图象的这种特征表达在自变量与函数值之间有何规律? 学生开头可能只会用语言去描
8、述:自变量互为相反数,函数值相等。教师可引导学生先把它们详细化,再用数学符号表示。(借助课件演示令比拟得出等式,再令,得到,详见课件的使用)进而再提出会不会在定义域内存在,使与不等呢?(可用课件帮忙演示让动起来观看,发觉结论,这样的是不存在的)从这个结论中就可以发觉对定义域内任意一个,都有成立。最终让学生用完整的语言给出定义,不精确的地方教师予以提示或调整。 (1)偶函数的定义:假设对于函数的定义域内任意一个,都有,那么就叫做偶函数。(板书) (给出定义后可让学生举几个例子,如等以检验一下对概念的初步熟识) 提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出
9、或的图象让学生观看讨论) 学生可类比刚刚的方法,很快得出结论,再让学生给特别函数的定义。 (2)奇函数的定义:假设对于函数的定义域内任意一个,都有,那么就叫做奇函数。(板书) (由于在定义形成时已经有了肯定的熟识,故可以先作判定,在判定中再加深熟识) 例1。判定以下函数的奇偶性(板书) (1);(2); (3); (5);(6)。 (要求学生口答,选出12个题说过程) 解:(1)是奇函数。(2)是偶函数。 (3),是偶函数。 前三个题做完,教师做一次小结,判定奇偶性,只需验证与之间的关系,但对你们的答复我不满意,由于题目要求是判定奇偶性而你们只答复了一半,另一半没有作答,以第(1)为例,说明怎
10、样解决它不是偶函数的问题呢? 学生经过思索可以解决问题,指出只要举出一个反例说明与不等。如即可说明它不是偶函数。(从这个问题的解决中让学生再次熟识到定义中任意性的重要) 从(4)题开头,学生的答案会有不同,可以让学生先争论,教师再做评述。即第(4)题中外表成立的=不能经受任意性的考验,当时,由于,故不存在,更谈不上与相等了,由于任意性被破坏,所以它不能是奇偶性。 教师由此引导学生,通过刚刚这个题目,你发觉在判定中需要注意些什么?(若学生发觉不了定义域的特征,教师可再从定义启发,在定义域中有1,就必有1,有2,就必有2,有,就必有,有就必有,从而发觉定义域应关于原点对称,再提出定义域关于原点对称
11、是函数具有奇偶性的什么条件? 可以用(6)帮助说明充分性不成立,用(5)说明必要性成立,得出结论。 (3)定义域关于原点对称是函数具有奇偶性的必要但不充分条件。(板书) 由学生小结判定奇偶性的步骤之后,教师再提出新的问题:在刚刚的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明。 经学生思索,可找到函数。然后连续提问:是不是具备这样性质的函数的解析式都只能写成这样呢?能证明吗? 例2。已知函数既是奇函数也是偶函数,求证:。(板书)(试由学生来完成) 证明:既是奇函数也是偶函数,=,且,= ,即证后
12、,教师请学生记住结论的同时,追问这样的函数应有多少个呢?学生开头可能认为只有一个,经教师提示可发觉,只是解析式的特征,若转变函数的定义域,如,它们明显是不同的函数,但它们都是既是奇函数也是偶函数。由上可知函数按其是否具有奇偶性可分为四类 (4)函数按其是否具有奇偶性可分为四类:(板书) 例3。判定以下函数的奇偶性(板书) (1);(2);(3)。 由学生答复,不完整之处教师补充。 解:(1)当时,为奇函数,当时,既不是奇函数也不是偶函数。 (2)当时,既是奇函数也是偶函数,当时,是偶函数。 (3)当时,于是, 当时,于是=, 综上是奇函数。 教师小结(1)(2)注意分类争论的使用,(3)是分段
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 教案 人教版
限制150内