几何晶体学2汇总 (2).ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《几何晶体学2汇总 (2).ppt》由会员分享,可在线阅读,更多相关《几何晶体学2汇总 (2).ppt(153页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、几何晶体学2汇总2.3.1简单的历史回顾简单的历史回顾固体材料的分类固体材料的分类固体材料可以按照其中原子排列的有序程度分为晶态和非晶态两大类。一个明显的弯曲标志着随着温度的下降体系中发生了相变:在沸腾温度处首先发生气相到液相的转变。随着温度的继续降低,液体的体积连续减小。注意到曲线的斜率应该对应于体系的热膨胀系数:固体的热膨胀系数小于液体。液体在缓慢降温过程中形成晶体。在这一过程中,原子有足够的时间发生重排,因此形成的固体中原子的排列呈有序状态。液体在急冷过程中形成非晶体。在这一过程中,原子没有足够的时间发生重排,因此形成的固体中原子的排列呈无序状态。晶体和非晶体的根本区别晶体和非晶体的根本
2、区别晶态材料具有长程有序的点阵结构,其组成原子或基元处于一定格式空间排列的状态;非晶态材料则象液体那样,只有在几个原子间距量级的短程范围内具有原子有序的状态。(短程有序)v人类最早使用的材料是天然的石块。在采集石块的同时也就发现了各种具有规则外形的石头。人们把这些具有规则外形的石头称为晶体。v在我国周口店的中国猿人遗址就发现了用水晶等晶体制成的工具。这是人类认识晶体的开始。因此,晶体是一个非常古老的名词。v无色的六面体食盐是最普通的同时也是最重要的一种晶体。盐对于生命来说是必不可少的,而在所有文化形态中,盐又历来具有某种象征的性质。v“salary”=“买盐的钱”。晶面角守恒定律晶面角守恒定律
3、v晶体最初给人们的印象就是具有规则外形,而对晶体开展的研究也是从这些规则外形开始的。v1669年,一个叫做斯丹诺(NicolasSteno)的意大利人对水晶进行了仔细的研究后发现:尽管不同的石英晶体,其晶面的大小、形状、个数都可能会有所不同,但是相应的晶面之间的夹角都是固定不变的。v天然的水晶(石英晶体)可以有各种不同的外形v尽管不同的石英晶体,其晶面的大小、形状、个数都可能会有所不同,但是相应的晶面之间的夹角都是固定不变的v其中的a 晶面和b 晶面之间的夹角总是14147,b 晶面和c 晶面之间的夹角总是12000,而c 晶面和a 晶面之间的夹角总是11308。此后,人们对各种不同的晶体进行
4、了大量的观察,发现类似的规律对于其他的晶体也是存在。这就诞生了结晶学上的第一条经验定律晶面角守恒定律在同一温度下,同一种物质所形成的晶体,其相同晶面的夹角是一个常数。晶面角守恒定律是晶体学中最重要的定律之一,它揭露了晶体外形的一种重要的规律性,从而指导人们怎样去定量地、系统地研究各式各样的晶体。v在19世纪初,在晶面角守恒定律的启发下,晶体测角工作曾盛极一时,大量天然矿物和人工晶体的精确观测数据就是在这个阶段获得的。这些数据为进一步发现晶体外形的规律性(特别是关于晶体对称性的规律)创造了条件。v直至今天,测定晶面角仍然是从晶体外形来鉴别各种不同矿物的一种常用的可靠方法,为此人们还设计制作了一些
5、晶体测角仪,专门用于这一目的。晶面角守恒定律的发现,使得当时的人们坚信“晶体就是具有规则形状的物体”。但是,这一定义显然只是考虑了晶体的宏观特征,还远远没有涉及到晶体的内在本质。于是,一些科学家们便开始思考这样一个问题:是什么原因导致了晶体的规则外形?晶胞学说晶胞学说v1784年法国科学家阿羽(ReneJustHay)提出了著名的晶胞学说:每种晶体都有每种晶体都有一个形状一定的最小的组成细胞一个形状一定的最小的组成细胞晶晶胞;大块的晶体就是由许许多多个晶胞胞;大块的晶体就是由许许多多个晶胞砌在一起而形成的。砌在一起而形成的。这是晶体学上第一次就晶体由外表到本质进行的猜想。v在此之前,斯丹诺的老
6、师曾经有机会提出相似的学说,但是在即将接近这一学说的时候他莫名其妙地止步了。(冰洲石)v1803年,英国科学家道尔顿(JohnDalton)提出了元素原子说:纯粹的物质是由具有一定质量的原子构成的,化合物则是由不同原子按一定比例结合而成的。v受道尔顿的元素原子学说的启发,1855年另一个法国人布拉维(A.Bravais)建立了晶体结构的空间点阵学说。空间点阵学说空间点阵学说一个理想晶体是由全同的称作基元的结构单元在空间作无限的重复排列而构成的;基元可以是原子、离子、原子团或者分子;晶体中所有的基元都是等同的,也就是说他们的组成、位形和取向都是相同的。因此,晶体的内部结构可以抽象为在空间作周期性
7、的无限分布的一些相同的几何点,这些几何点代表了基元的某个相同位置,而这些几何点的集合就称作空间点阵,简称点阵。一个含有两个原子(分别用一大一小两个空心圆点表示)的基元这个基元在二维空间作有规律的重复排列便得到了一个二维晶体结构黑点为抽象出来的几何点,这些几何点就构成了一个二维空间点阵。在这个抽象过程中,几何点位置的选取可以是任意的,只要是在基元所包括的范围之内就可以。显然在这一抽象过程中,构成基元的原子的种类和大小并不影响到最终点阵的形状。对点阵最终形状产生影响的仅仅是基元在空间的排列规律。NaCl晶体的结构NaCl晶体结构中等同点的分布及其相应导出的二维点阵几个基本概念几个基本概念基元在Na
8、Cl中,基元为NaCl分子等同原子在NaCl中,所有的Na离子均为等同原子,所有的Cl离子也为等同原子等同点所有等同原子所处的位置抽象为等同点空间点阵所有的等同点在三维空间的排列就构成了空间点阵空间点阵学说提出之后的相当一段长时间里一直被认为是一种假说,它的抽象理论当时并没有引起物理家和化学家们的注意,还有不少人仍然一直固执地认为在晶体中原子、分子是无规则地分布的。这一状况直到20世纪初才得到根本的改变,而导致这一改变的直接原因则是一项新的实验技术的诞生。这就是X射线衍射分析技术射线衍射分析技术空间点阵学说的实验验证劳厄的晶体X射线衍射实验劳厄(MaxV.Laue,18791960),德国物理
9、学家,1912年发现了X射线通过晶体时产生的衍射现象,从而导致了X射线衍射技术的诞生,它成为研究晶体内部结构的重要技术手段。劳厄因为这项成果而于1914年获得诺贝尔物理学奖。劳厄衍射照片现代X射线衍射分析的理论基础是英国物理学家布拉格父子奠定的。布拉格父子于1913年借助X射线成功地测出金刚石的晶体结构,并提出了“布拉格公式”,为最终建立现代晶体学打下了基础,于1915年获得诺贝尔物理学奖。当时,小布拉格年仅25岁,是至今为止最年轻的诺贝尔奖获得者。而老布拉格则已经53岁,被称为是大器晚成的科学家。布拉格定律一束波长为的平行X射线与晶面成角入射这是一块单晶体,两个相邻晶面之间的距离为d当入射的
10、X射线波长、入射角 和晶面间距d 之间满足如下关系时,将产生衍射这就是著名的布拉格定律。实验表明,布拉格角的限定是十分严格的,通常只要入射角与布拉格角相差十分之几度,反射的光束就会完全相消。在劳厄和布拉格父子工作的基础上,人们发展出了一系列借助于X射线衍射分析晶体结构的技术,这些技术已经成为了材料科学研究中最重要也是最有用的分析手段。目前常用的X射线衍射仪的工作原理示意图波长为 的X射线从T处以 角入射至试样S处如果试样中某一原子面正好满足布拉格方程,便会在C处得到加强的衍射束衍射仪可以连续地改变试样与入射X射线的相对角度,使得更多的原子面有机会满足布拉格方程所限定的条件而得到衍射峰SiO2晶
11、体和SiO2玻璃的X射线衍射谱图X射线衍射分析技术可以得到以下一些信息:v相组成v晶格参数v残余应力v关于X-射线衍射分析技术的系统知识可以参阅王英华主编,“X光衍射技术基础”,原子能出版社随着科学技术的发展,人们也找到了另外一些研究晶体微观结构的实验方法,包括电子显微镜、电子衍射、中子衍射等等。现在最先进的电子显微镜已经能够直接分辩出某些晶体中的原子。HRTEMimageofanareaofTiCparticleadjacenttoTiC/Al2O3interfaceinTiC/Al2O3composite几种显微分析技术的一般分辨率几种显微分析技术的一般分辨率v扫描探针显微镜:0.02nm
12、v透射电镜:0.2nmv扫描电镜:2nmv光学显微镜:200nmv人眼:0.2mm劳厄和布拉格父子的工作使空间点阵学说从猜想上升为有坚实实验基础的正确理论,从而奠定了现代结晶学的基础。自此,人们很自然地就把晶体定义为构成物体的微粒(分子、原子或者离子)在三维空间做有规律的周期性重复排列而得到的物体显然,晶体的有规则的几何外形其实就是构成晶体的微粒的有规则排列的外部反映。晶体的宏观特征晶体的宏观特征v规则的几何外形v晶面角恒定v有固定的熔点v物理性质的各向异性2.3.2球体堆积原理球体堆积原理一个讨论晶体结构之前必须进行的有趣同时也有点伤脑子的游戏等大球体的最紧密堆积及其空隙等大球体的最紧密堆积
13、及其空隙第一层:每个球与周围6个球相邻接触,每3个球围成1个空隙。其中一半是尖角向上的空隙,另一半是尖角向下的空隙。第二层:每个球均与第一层中的3个球相邻接触,且落在同一类三角形空隙的位置上。此时两层间存在两类不同的空隙。等大球体的最紧密堆积的空隙等大球体的最紧密堆积的空隙第一种:连续穿透两层的空隙第二种:未连续穿透两层的空隙第二种:未连续穿透两层的空隙现在考虑第三层球的排列方式第一种方法是将第三层落在未穿透两层的空隙位置上未穿透两层的空隙有两类,但只有处于第二层的那类空隙的位置可以保证每一个第三层的球与第二层的3个球相切。第三层的摆放位置将第三层球堆积在这类空隙上可以看出,第三层与第一层完全
14、重复。如此继续堆积就得到ABABAB顺序堆跺的一个六方最紧密堆积结构。六方密堆结构及相应的六方格子六方密堆结构及相应的六方格子 六方最紧密堆积结构的空间利用率在六面体的上表面,短对角线与相邻两边构成了一个等边三角形,边长为a。这个等边三角形与体内球相切,4个球的中心连成了一个边长为a的正四面体,这个正四面体的高为:(2/3)1/2a。平行六面体的高度即为2(2/3)1/2a。如果球的半径为r,则a=2r。平行六面体的体积为两个圆球的体积为故空间利用率为VB/V=74%。这是理论上圆球紧密堆积所能达到的最大堆积密度。第三层球排列的第二种方式将第三层落在连续穿透两层的空隙位置上可以看出,第三层与第
15、一层第二层都不同,在摆放第四层时才与第一层重复。如此堆积就得到ABCABCABC顺序堆跺的一个立方最紧密堆积结构。对立方最紧密堆积结构可以抽象出一个面心立方格子。立方最紧密堆积的最紧密排列层是(111)晶面可以证明:立方最紧密堆积结构的空间利用率也是74%。(证明过程留作课外作业自己完成)在各类晶体结构中,六方最紧密堆积和立方最紧密堆积是空间利用率最高的两种结构。四面体空隙和八面体空隙处于四个球包围之中的空隙:四个球中心连线刚好构成一个四面体的形状。处于六个球包围之中的空隙:六个球中心连线刚好构成一个八面体的形状。八面体空隙的体积大于四面体空隙的体积考虑第二层上的这个圆球该球下方三个以C标注的
16、位置为八面体空隙该球下方三个以A标注的位置为四面体空隙该球正下方还有1个四面体空隙考虑到第三层与第一层的相似性,可以看出:这个球的周围应该有6个八面体空隙和8个四面体空隙。若有n个等大球体作最紧密堆积,就必定有n个八面体空隙和2n个四面体空隙。n每个球的周围有6个八面体空隙和8个四面体空隙。n每个八面体空隙由6个球围成,每个四面体空隙由4个球围成等大球体的其他堆积方式等大球体的其他堆积方式简单立方堆积,空间利用率为52%。等大球体的其他堆积方式等大球体的其他堆积方式体心立方堆积,空间利用率为68%。游戏还没有结束!我们现在再来准备一些半径小一些的圆球,和前面那些半径较大的圆球混在一起,然后看看
17、这些大小不同的球该如何堆积才能获得较大的空间利用率。先考虑大球按最紧密方式堆积(六方或者立方)时的情况:这时大球构成的结构中存在有八面体和四面体两种空隙;将小球填在这些空隙中显然就可以提高空间利用率。当然,从实际晶体结构的角度来看,这时还需要考虑两个具体的问题小球和大球应该直接相切无论是四面体空隙还是八面体空隙,小球填入后要保证结构仍具有一定的稳定性小球填入四面体空隙四个等大的圆球(半径为R)构成一个正四面体,在这个四面体中填入一个小球。如果小球恰好与4个大球都相切,且4个大球本身仍保持相切状态,试确定小球的半径r。计算过程并不复杂,结果应该是:r=0.225R计算一下ABCDO大球半径与小球
18、半径之和:AB=R+rO点为正三角形重心,BO为正三角形高度的2/3:BO=(23)R/3A点为正四面体重心,AO为正四面体高度的1/4:AO=R/(6)nr=0.225R 称为小球填入四面体空隙时的临界半径。n如果r0.225R,小球的填入将导致大球脱离相切状态。n随着小球半径的逐渐增大,四面体空隙的体积也逐渐增大,从而使得整个堆积体的体积增大,结果无疑就是堆积体空间利用率的降低。因此,如果要保证堆积体具有较大的空间利用率,填入四面体空隙的小球的半径不可能无限制地增大。n如果小球半径较大的话,可以将其填入八面体空隙以提高堆积体的空间利用率。填入八面体空隙的小球的临界半径为r=0.414R。小
19、球填入其他类型的空隙三角形空隙:r=0.155R小球填入其他类型的空隙八面体空隙:r=0.414R小球填入其他类型的空隙六面体空隙:r=0.732R需要掌握的一些基本内容需要掌握的一些基本内容晶体的宏观特征球体紧密堆积原理等大球体最紧密堆积的两种方式及其空间利用率计算;等大球体的其他堆积方式及其空间利用率计算;不等大球体堆积中小球的临界半径计算2.3.3空间点阵空间点阵v晶体内部原子排列很类似于球体的堆积。结晶学中往往把构成晶体的微粒(原子或者离子)视为具有一定半径的球体,这些球体在三维空间按一定规律无限排列就构成了晶体。v实际晶体微粒的堆积比球体堆积要稍微复杂一些,前者除了必须考虑几何因素之
20、外,微粒之间的相互作用也是影响原子或者离子排列状态的关键因素。v把微粒间相互作用的影响暂时撇开而从纯粹的几何角度来讨论晶体结构的描述问题,就可以把晶体中微粒的排列看成是等大球体或者不等大球体的堆积。1)几个基本概念几个基本概念等同微粒、周期等同微粒、周期从球体堆积模型可以看出,晶体中微粒排列的一个基本特征就是原子的排列是有规律的:不论从哪一个方向看上去,总是相隔一定的距离就会出现相同的微粒。这里所说的“相同”,不仅仅是微粒本身的相同(同类原子或者离子),还包括了微粒所处环境的相同。晶体结构中种类和所处的周围环境完全相同的微粒称为等同微粒等同微粒,而两个等同微粒之间的距离称为周期周期。显然,沿不
21、同的方向周期可能是不同的。空间点阵、结点空间点阵、结点晶体中微粒排列的周期性规律可以用一些在空间有规律分布的几何点来表示。我们可以把晶体中所有的等同微粒都分别抽象为一个几何点,这样微粒在空间的排列就相当于这些几何点在空间的有规律分布。这样的几何点的集合称为空间空间点阵点阵,空间点阵中的几何点称为点阵的结点结点,而沿点阵的任何一个方向上相邻两个结点之间的距离就是晶体沿这一方向的周期。关于等同关于等同点阵只是表示等同微粒在空间的分布规律的一种几何抽象。因为等同微粒不仅要求微粒的种类相同,而且要求微粒所处的周围环境也相同,因此即使在只由一类微粒构成的晶体(单质晶体)中,也并不一定是所有的微粒都是等同
22、微粒;而对于化合物晶体,不同的微粒因为种类不同就显然不是等同微粒。上节课的一个例子:一个由两种不同的原子构成的结构基元以及由这个基元组成的二维点阵在从这个结构抽象出点阵的过程中,把由这两种原子组成的一个基元抽象为一个点如果我们把这个空间点阵还原为晶体结构的话,点阵中的每一个结点都将转换为由两个原子组成的一个基元。再来看看六方最紧密堆积的情况首先,这一结构中所有的圆球都是一样的,也就是说微粒的种类是一样的。顶点处的八个圆球是等同微粒:种类相同,所处环境也相同。顶点处的圆球和六面体内的圆球是不等同微粒:种类虽然相同,但所处环境不同。因此这个结构中的基元是由两个同种类的圆球构成的。因此,对空间点阵的
23、描述是:将构成晶体的最小结构单元基元抽象为几何点,这些几何点的集合就称为空间点阵。晶体的最小结构单元基元中包括了晶体中所有种类的不等同微粒,而且构成基元的微粒中任意两个都互为不等同微粒。从等大球体堆积构型中抽象出空间点阵从等大球体堆积构型中抽象出空间点阵(一一)六方最紧密堆积六方最紧密堆积这个点阵相当于一个底面顶角为60的平行六面体在三维空间的无限堆垛比较一下晶体结构与空间点阵把所有的微粒都画出来的图形表示的是晶体的结构只给出等同微粒的图形表示的是空间点阵从等大球体堆积构型中抽象出空间点阵从等大球体堆积构型中抽象出空间点阵(二二)立方最紧密堆积立方最紧密堆积ABCABC堆积就构成了一个立方最紧
24、密堆积结构换一个角度看看立方最紧密堆积可以看出一些特征立方最紧密堆积结构可以抽象出一个空间点阵,这个点阵相当于下面的平行六面体在三维空间无限堆垛而形成点阵中的结点所代表的基元只由一个圆球构成。这个图形所中顶点与面心是等同点吗?从等大球体堆积构型中抽象出空间点阵从等大球体堆积构型中抽象出空间点阵(三三)简单立方堆积简单立方堆积简单立方堆积就是简单这么一个图形一层层地堆起来就是相应的空间点阵从等大球体堆积构型中抽象出空间点阵从等大球体堆积构型中抽象出空间点阵(四四)体心立方堆积体心立方堆积体心位置和顶点位置是等同位置小结一下小结一下六方最紧密堆积的晶体结构图形与空间点阵图形是不一样的,而三种立方堆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 几何晶体学2汇总 2 几何 晶体学 汇总
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内