十一章蛋白质的生物合成.ppt
《十一章蛋白质的生物合成.ppt》由会员分享,可在线阅读,更多相关《十一章蛋白质的生物合成.ppt(79页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、十一章蛋白质的生物合成 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望 引引 言言 中心法则的补充与完善 在在细细胞胞分分裂裂过过程程中中,通通过过DNADNA的的复复制制把把遗遗传传信信息由亲代传递给子代;息由亲代传递给子代;在在子子代代的的个个体体发发育育过过程程中中,遗遗传传信信息息由由DNADNA传传递递到到RNARNA,然然后后翻翻译译成成特特异异的的蛋蛋白白质质,表表现现出出与与亲亲代代相相似似的的遗遗传传性性状状。这这种种遗遗传传信信息息的的流流向向
2、,称称为为中心法则中心法则。中心法则DNARNA蛋白质蛋白质转录转录翻译翻译复制复制狭义的中心法则狭义的中心法则 在在某某些些情情况况下下,RNARNA也也是是重重要要的的遗遗传传物物质质,如如RNARNA病病毒毒中中RNARNA具具有有自自我我复复制制的的能能力力,并并同同时时作作为为mRNAmRNA指导蛋白质的生物合成。指导蛋白质的生物合成。在在致致癌癌RNARNA病病毒毒中中,RNARNA还还以以逆逆转转录录的的方方式式将将遗传信息传递给遗传信息传递给DNADNA分子。分子。中心法则的补充与完善 中心法则中心法则RNADNA蛋白质蛋白质转录转录翻译翻译复制复制反转录反转录RNA复制复制复
3、复制制:以以亲亲代代DNADNA分分子子的的双双链链为为模模板板,按按照照碱碱基基配配对对的的原原则则,合合成成出出与与亲亲代代DNADNA分分子子相相同同的的双链双链DNADNA的过程。的过程。转转录录:以以DNADNA分分子子中中一一条条链链的的部部分分片片段段为为模模板板,按按照照碱碱基基配配对对原原则则,合合成成出出一一条条与与模模板板DNADNA链互补的链互补的RNARNA分子的过程。分子的过程。翻翻译译:把把mRNAmRNA上上的的遗遗传传信信息息按按照照遗遗传传密密码码转转换换成成蛋蛋白白质质中中特特定定的的氨氨基基酸酸序序列列的的过过程程。“翻翻译译”又叫又叫“转译转译”。中心
4、法则的补充与完善几个基本重要的概念几个基本重要的概念第一节第一节 蛋白质合成体系的组分蛋白质合成体系的组分 蛋蛋白白质质的的合合成成是是一一个个十十分分复复杂杂的的过过程程,蛋蛋白白质质的的合合成成要要求求100100多多种种大大分分子子物物质质参参与与和和相相互互协协作作,这这些些大大分分子子物物质质包包括括rRNArRNA、tRNAtRNA、核核糖糖体体、多多种种活活化化酶酶及及各种蛋白质因子。各种蛋白质因子。蛋白质的合成不只是氨基酸之间形成蛋白质的合成不只是氨基酸之间形成肽键的问题,更重要的在于安排氨基酸的肽键的问题,更重要的在于安排氨基酸的排列顺序,以形成千差万别的蛋白质。排列顺序,以
5、形成千差万别的蛋白质。一、遗传密码一、遗传密码 mRNA是蛋白质合成过程中直接指令氨基酸参是蛋白质合成过程中直接指令氨基酸参入的模板。那么入的模板。那么mRNA上的遗传信息是如何传递给上的遗传信息是如何传递给蛋白质的?即蛋白质的?即mRNA的核苷酸序列是如何对应于蛋的核苷酸序列是如何对应于蛋白质中的氨基酸序列的?其对应关系来自白质中的氨基酸序列的?其对应关系来自遗传密码遗传密码 mRNA(或或DNA)中的核苷酸序列与蛋白质中氨中的核苷酸序列与蛋白质中氨基酸序列之间的对应关系,称为遗传密码。基酸序列之间的对应关系,称为遗传密码。mRNA(或或DNA)中三个连续的核苷酸可编码一中三个连续的核苷酸可
6、编码一种氨基酸,这种核苷酸三联体称为密码子。种氨基酸,这种核苷酸三联体称为密码子。一、遗传密码一、遗传密码 19541954年物理学家年物理学家G.GamovG.Gamov首先对遗传密码进行首先对遗传密码进行探讨。蛋白质由探讨。蛋白质由2020种基本氨基酸组成,而种基本氨基酸组成,而mRNAmRNA只含只含有有4 4种核苷酸,由种核苷酸,由4 4种核苷酸构成的序列是如何决定种核苷酸构成的序列是如何决定多肽链中多至多肽链中多至2020种氨基酸的序列的呢?显然,在核种氨基酸的序列的呢?显然,在核苷酸和氨基酸之间不能采取简单的一对一的对应关苷酸和氨基酸之间不能采取简单的一对一的对应关系。系。2 2个
7、核苷酸决定一个氨基酸也只能编码个核苷酸决定一个氨基酸也只能编码1616种氨种氨基酸,如果用基酸,如果用3 3个核苷酸决定一个氨基酸,个核苷酸决定一个氨基酸,4 43 3=64=64,就足以编码就足以编码2020种氨基酸了,这说明可能需要种氨基酸了,这说明可能需要3 3个或个或更多个核苷酸编码一个氨基酸。更多个核苷酸编码一个氨基酸。一、遗传密码一、遗传密码 1961年年Francis Crick及其同事的遗传实验及其同事的遗传实验进一步肯定进一步肯定3个碱基编码一个氨基酸,此三联体个碱基编码一个氨基酸,此三联体碱基即称为密码子。他们研究碱基即称为密码子。他们研究T4噬菌体噬菌体 位点位点A和和B
8、两个顺反子变异的影响,这两个基因与噬两个顺反子变异的影响,这两个基因与噬菌体能否感染大肠杆菌菌体能否感染大肠杆菌 株有关。株有关。他们的研究发现,在上述位点缺失一个核他们的研究发现,在上述位点缺失一个核苷酸产生的突变体,不能感染大肠杆菌苷酸产生的突变体,不能感染大肠杆菌 株。株。一、遗传密码一、遗传密码碱基序列碱基序列碱基序列碱基序列CATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCAT1 1 1 1CATCATCATCATCACACACAC C C CATCATCATCATCATCATCATCATCAT
9、CATCATCATCATCATCATCATC1 1 1 11 1 1 1 CATCATCATCATCACACACAC C C CA A A AX X X XT T T TCATCATCATCATCATCATCATCATCATCATCATCAT2 2 2 2CATCATCATCATX X X XCACACACAX X X XTCTCTCTCATCATCATCATCATCATCATCATCATATATAT3 3 3 3CACACACAX X X X T T T TX X X XC C C CATATATATX X X X CAT CAT CAT CAT CAT CAT CAT CAT CAT CA
10、T CAT CAT 缺失或插入核苷酸引起三联体密码的改变缺失或插入核苷酸引起三联体密码的改变 一、遗传密码一、遗传密码 在理论上,遗传密码可以通过简单的比较在理论上,遗传密码可以通过简单的比较 mRNA的碱基序列及其所编码的多肽的氨基酸的碱基序列及其所编码的多肽的氨基酸序列进行确定,然而在序列进行确定,然而在 20 世纪世纪 60 年代,此年代,此方法不可行,因为当时分离方法不可行,因为当时分离 mRNA 并测定其并测定其序列的方法尚未建立。序列的方法尚未建立。2.遗传密码的解读 1961年年 Nirenberg 等用大肠杆菌无细胞等用大肠杆菌无细胞体系,外加体系,外加 20 种氨基酸的混合物
11、(其中有一种氨基酸的混合物(其中有一种氨基酸被同位素标记)及种氨基酸被同位素标记)及 poly U,经保温经保温反应后,得到了被标记的苯丙氨酸的多聚体,反应后,得到了被标记的苯丙氨酸的多聚体,从而证明从而证明 poly U起了信使起了信使 RNA 的作用,的作用,UUU是编码苯丙氨酸的密码子。用同样的方法是编码苯丙氨酸的密码子。用同样的方法证明证明 CCC 编码脯氨酸,编码脯氨酸,AAA 编码赖氨酸。编码赖氨酸。这样,这三个密码子最早被解译出来了。这样,这三个密码子最早被解译出来了。2.遗传密码的解读 Nirenberg 和和 Ochoa 等又进一步用两种核苷等又进一步用两种核苷酸或三种核苷酸
12、的共聚物作模板,重复上述实验。酸或三种核苷酸的共聚物作模板,重复上述实验。例如,用例如,用U和和G 随机排列组成的共聚物可以出现随机排列组成的共聚物可以出现 8 种不同的三联体,即种不同的三联体,即GGG,GGU,GUG,UGG,UUG,UGU,GUU,UUU。酶促合成共聚核苷酸时,根据加入核苷酸底物酶促合成共聚核苷酸时,根据加入核苷酸底物的比例可以计算出各种三联体出现的频率,而标记的比例可以计算出各种三联体出现的频率,而标记氨基酸掺入新合成的肽链的相对量与三联体密码出氨基酸掺入新合成的肽链的相对量与三联体密码出现的频率相符合现的频率相符合 2.遗传密码的解读 UUUGUUGGU2.遗传密码的
13、解读 1964年年Nirenberg等发现在无蛋白质合成的等发现在无蛋白质合成的情况下,三联核苷酸能促进特异的情况下,三联核苷酸能促进特异的tRNA与核糖与核糖体结合。例如,加入体结合。例如,加入pUpUpU促进脯氨酸促进脯氨酸tRNA与之结合,与之结合,pApApA促进赖氨酸促进赖氨酸tRNA与之结合与之结合进一步要解决的问题是密码子中三个碱基的排列顺序进一步要解决的问题是密码子中三个碱基的排列顺序2.遗传密码的解读 将结合的氨酰将结合的氨酰-tRNA-三核苷酸三核苷酸-核糖体吸核糖体吸附在硝酸纤维素滤膜上,这样,凡是结合在核糖附在硝酸纤维素滤膜上,这样,凡是结合在核糖体(带特定氨基酸)上的
14、体(带特定氨基酸)上的tRNA分子在通过硝酸分子在通过硝酸纤维素滤膜时被截留下来,而未结合的纤维素滤膜时被截留下来,而未结合的tRNA则则可通过。由于可通过。由于三核苷酸模板只能与一定的三核苷酸模板只能与一定的tRNA对应对应,而一定的,而一定的tRNA又只与特定的氨基酸又只与特定的氨基酸结结合,合,所以只要所以只要带标记带标记的氨基酸被的氨基酸被滤膜,就可以测出三滤膜,就可以测出三联体对应氨基酸的密码子。联体对应氨基酸的密码子。2.遗传密码的解读 利用此系统,通过合成所有利用此系统,通过合成所有64种可能的三联种可能的三联体,测定每种三联体对体,测定每种三联体对20种氨基酸相应的种氨基酸相应
15、的tRNA与核糖体结合的影响,已使与核糖体结合的影响,已使50多种密码子被解译多种密码子被解译出来。但还有一些三联体编码的氨基酸不能肯定,出来。但还有一些三联体编码的氨基酸不能肯定,需要用其他方法来破译。需要用其他方法来破译。2.遗传密码的解读 与此同时,与此同时,Khorana 应用合成的具有重复应用合成的具有重复序列的多核苷酸如序列的多核苷酸如UCUCUCUC进行体外蛋白质进行体外蛋白质人工合成,发现产物为丝氨酸与亮氨酸交替出现人工合成,发现产物为丝氨酸与亮氨酸交替出现的多肽:的多肽:Ser Leu Ser Leu,说明说明UCU编编码丝氨酸,而码丝氨酸,而CUC编码亮氨酸。编码亮氨酸。2
16、.遗传密码的解读 当一合成的三联核苷酸重复序列,如当一合成的三联核苷酸重复序列,如 poly(UUC)作模板时,由于阅读框架不同,得作模板时,由于阅读框架不同,得到的产物是三种不同的均聚多肽:多聚苯丙氨酸、到的产物是三种不同的均聚多肽:多聚苯丙氨酸、多聚丝氨酸和多聚亮氨酸,说明多聚丝氨酸和多聚亮氨酸,说明UUC编码苯丙氨编码苯丙氨酸、酸、UCU编码丝氨酸、编码丝氨酸、CUU编码亮氨酸。编码亮氨酸。通过分析各种两个和三个核苷酸重复序列编通过分析各种两个和三个核苷酸重复序列编码的多肽,确认了许多密码子的一致性并填补了码的多肽,确认了许多密码子的一致性并填补了遗漏的遗传密码遗漏的遗传密码。2.遗传密
17、码的解读 UUUGUUGGU2.遗传密码的解读 v 密码的无标点性、无重叠性密码的无标点性、无重叠性 3.遗传密码的特点v 密码子的简并性密码子的简并性一个氨基酸可以有几个不同的密码子的特性一个氨基酸可以有几个不同的密码子的特性。同义密码子:编码同一个氨基酸的一组密码子。同义密码子:编码同一个氨基酸的一组密码子。注意:注意:Trp Trp 和和 MetMet只有一个密码子。只有一个密码子。LeuLeu、ArgArg、Ser Ser 均有均有6 6个密码子。个密码子。ATG CGG AAA TGG CCG AAT GATv 密码子的通用性和例外密码子的通用性和例外 密码子的通用性是指生物细胞共同
18、使用同密码子的通用性是指生物细胞共同使用同一套遗传密码字典。只有在一些线粒体中使用一套遗传密码字典。只有在一些线粒体中使用的遗传密码与通用密码有所区别。所以说遗传的遗传密码与通用密码有所区别。所以说遗传密码基本通用,但非绝对通用。密码基本通用,但非绝对通用。3.遗传密码的特点 v 起始密码子和终止密码子起始密码子和终止密码子 在在6464个个密密码码子子中中,有有3 3个个密密码码子子不不编编码码任任何何氨氨基基酸酸,从从而而成成为为肽肽链链合合成成的的终终止止信信号号,称称为为终终止止密密码码子子或或无无义义密密码码子子,它它们们是是UAAUAA、UAGUAG、UGAUGA。其其余余的的61
19、61个个密密码码子子均均编编码码不不同同的的氨氨基基酸酸,其其中中AUGAUG既既是是MetMet的的密密码码子子,又又是是肽肽链链合合成成的的起起始始信信号号,称为起始密码子。称为起始密码子。v 密码子的摆动性密码子的摆动性 密密码码子子的的专专一一性性主主要要是是由由前前两两位位的的碱碱基基决决定定,而第三位碱基有较大的灵活性。而第三位碱基有较大的灵活性。3.遗传密码的特点二、二、mRNAmRNA mRNAmRNA的功能结构的功能结构 mRNAmRNA上能够编码一条多肽链合成的区段叫做编码区。上能够编码一条多肽链合成的区段叫做编码区。原核生物原核生物 mRNAmRNA:其一条其一条mRNA
20、mRNA链可编码多个多肽链,称为多顺反链可编码多个多肽链,称为多顺反子的子的mRNAmRNA。编编码码区区的的第第一一个个密密码码子子必必定定是是AUGAUG,最最后后一一个个密密码码子子必必定定是是UAAUAA或或UAGUAG或或UGAUGA,从从第第一一个个密密码码子到最后一个密码子之间间隔子到最后一个密码子之间间隔3 3n n个核苷酸。个核苷酸。3非编码区5非编码区编码区非编码区编码区非编码区编码区二、二、mRNAmRNA真核生物真核生物mRNAmRNA:其一条其一条mRNAmRNA链只能编码一个多肽链,称为单顺反子的链只能编码一个多肽链,称为单顺反子的mRNAmRNA。编 码 区5非编
21、码区帽子PolyA尾巴3非编码区 mRNAmRNA的功能结构的功能结构 三、三、核糖体核糖体核糖体是合成蛋白质的场所。核糖体是合成蛋白质的场所。核糖体是合成蛋白质的场所。核糖体是合成蛋白质的场所。19551955年,年,Paul ZamecnikPaul Zamecnik通过实验确认核糖体是蛋通过实验确认核糖体是蛋白合成的场所。他将放射性同位素标记的氨基酸注射白合成的场所。他将放射性同位素标记的氨基酸注射到小鼠体内,经短时间后取出肝脏,制成匀浆,离心到小鼠体内,经短时间后取出肝脏,制成匀浆,离心后分成细胞核、线粒体、微粒体和可溶部分。发现微后分成细胞核、线粒体、微粒体和可溶部分。发现微粒体中的
22、放射性强度最高,若将微粒体部分进一步分粒体中的放射性强度最高,若将微粒体部分进一步分级分离,可在核糖体中大量回收到所掺入的放射性,级分离,可在核糖体中大量回收到所掺入的放射性,这说明核糖体是合成蛋白质的部位。这说明核糖体是合成蛋白质的部位。1.1.核糖体的存在部位核糖体的存在部位 三、三、核糖体核糖体 真核生物的核糖体一部分在细胞质中呈游离真核生物的核糖体一部分在细胞质中呈游离状态,另一部分与内质网结合,形成粗面内质状态,另一部分与内质网结合,形成粗面内质网。此外在其线粒体和叶绿体中也有核糖体。网。此外在其线粒体和叶绿体中也有核糖体。原核生物的核糖体存在于细胞质中;原核生物的核糖体存在于细胞质
23、中;核糖体是一个巨大的核糖核蛋白体 2.2.核糖体的组成核糖体的组成核糖体核糖体rRNArRNA蛋白质蛋白质原核生原核生物物7070S S3030S S1616S S2121种种5050S S2323S S、5S5S3131种种真核生真核生物物8080S S4040S S1818S S30-3230-32种种6060S S2828S S、5S5S、5.8S5.8S36-5036-50种种 三、三、核糖体核糖体2.2.核糖体的组成核糖体的组成 三、三、核糖核糖体体A three-dimensional model for the E.coli ribosomemRNAmRNA结合部位:结合部位:
24、大小亚基之间存在一条细沟,用于接纳大小亚基之间存在一条细沟,用于接纳mRNAmRNA;此外,小亚基的此外,小亚基的1616S rRNAS rRNA可以与可以与mRNAmRNA相互相互作用,从而参与作用,从而参与mRNAmRNA与核糖体的结合。与核糖体的结合。3.3.核糖体上的活性部位核糖体上的活性部位(1)(1)结合部位结合部位 三、三、核糖体核糖体3.3.核糖体上的活性部位核糖体上的活性部位tRNAtRNA结合部位:有结合部位:有2 2个个 氨酰基部位(氨酰基部位(A A位)位)氨酰氨酰tRNAtRNA的结合部位的结合部位 肽基部位肽基部位 (P P位)位)正在延长的多肽基正在延长的多肽基
25、tRNA tRNA的结合部位;的结合部位;tRNA tRNA的这两个结合部位有一小部分在的这两个结合部位有一小部分在3030S S亚基内,大部分在亚基内,大部分在5050S S亚基内。亚基内。三、三、核糖体核糖体催化肽键形成的部位:催化肽键形成的部位:称为肽基转移酶,又叫转肽酶。位于大亚基上。称为肽基转移酶,又叫转肽酶。位于大亚基上。1992 1992年发现该活性是由年发现该活性是由2323S rRNAS rRNA提供的。提供的。3.3.核糖体上的活性部位核糖体上的活性部位(2)(2)催化部位催化部位催化催化GTPGTP水解的部位:水解的部位:位于大亚基上,在核糖体移位期间将位于大亚基上,在核
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 十一 蛋白质 生物 合成
限制150内