数控机床的典型部件.ppt
《数控机床的典型部件.ppt》由会员分享,可在线阅读,更多相关《数控机床的典型部件.ppt(211页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数控机床的典型部件数控机床的典型部件5.1 概述概述 5.1.1 对数控机床机械机构的要求对数控机床机械机构的要求1.机床的性能要求机床的性能要求(1)机床的工艺范围)机床的工艺范围 机床可完成加工工序种类;机床可完成加工工序种类;加工零件类型;加工零件类型;材料和尺寸范围,毛坯种类。材料和尺寸范围,毛坯种类。(2)加工精度)加工精度 尺寸、形状和位置精度。尺寸、形状和位置精度。机床精度:几何精度、运动精度和定位精度。机床精度:几何精度、运动精度和定位精度。注意低速运动的平稳性。注意低速运动的平稳性。导轨的材料和结构导轨的材料和结构2.满足机床刚度和抗振性的要求满足机床刚度和抗振性的要求 具有
2、抵抗外载荷的能力;具有抵抗外载荷的能力;抵抗受迫和自激振动的能力;抵抗受迫和自激振动的能力;改善机床机构。改善机床机构。3.减少热变形要求减少热变形要求 减少发热减少发热 控制温升控制温升 改善机床机构改善机床机构4.机床可靠性要求机床可靠性要求5.人机要求人机要求5.1.2 数控车床的主体结构数控车床的主体结构5.1.3 加工中心的主体结构加工中心的主体结构 5.2数控机床的主轴系统数控机床的主轴系统 5.2.15.2.1对数控机床主轴系统的要求对数控机床主轴系统的要求数控机床主轴系统是数控机床的主运动传动系统。数控机床主轴运动是机床成型运动之一。它的精度决定了零件的加工精度。数控机床是具有
3、高效率的机床,因此它的主轴系统必须满足如下要求:(1)具有更大的调速范围并实现无级调速。数控机床为了保证加工时能选用合理的切削用量,从而获得更高的生产率、加工精度和表面质量,必须要求能在较大的调速范围内实现无级调速。一般要求主轴具备1(1001000)的恒转矩调速范围和110的恒功率调速范围。(2)具有较高的精度与刚度,传递平稳,噪声低。数控机床加工精度的提高,与主轴系统具有较高的精度密切相关。为此,要提高传动件的制造精度与刚度,就要对齿轮齿面高频感应加热淬火,以增加耐磨性;最后一级采用斜齿轮传动,使传动平稳;采用精度高的轴承及合理的支撑跨距等,以提高主轴组件的刚性。(3)良好的抗振性和热稳定
4、性。数控机床加工时,可能由于断续切削、加工余量不均匀、运动部件不平衡以及切削过程中的自振等原因引起的冲击力的干扰,会使主轴产生振动,从而影响加工精度和表面粗糙度,严重时甚至可能破坏刀具和主轴系统中的零件,使其无法工作。主轴系统发热使其中的零部件产生热变形,降低传动效率,破坏零部件之间的相对位置精度和运动精度,造成加工误差。为此,主轴组件要有较高的固有频率,实现动平衡,保持合适的配合间隙并进行循环润滑等。(4)在车削中心上,要求主轴具有C轴控制功能。在车削中心上,为了使之具有螺纹车削功能,要求主轴与进给驱动实行同步控制,即主轴具有旋转进给轴(C轴)的控制功能。(5)在加工中心上,要求主轴具有高精
5、度的准停功能。在加工中心上自动换刀时,主轴须停止在一个固定不变的方位上,以保证换刀位置的准确以及某些加工工艺的需要,即要求主轴具有高精度的准停功能。(6)具有恒线速度切削控制功能。利用车床和磨床进行工件端面加工时,为了保证端面加工时粗糙度的一致性,要求刀具切削的线速度为恒定值,随着刀具的径向进给,切削直径的逐渐减小,应不断提高主轴转速,并维持线速度为常数。此外,为了获得更高的运动精度,要求主运动传动链尽可能短,同时,由于数控机床特别是加工中心通常配备有多把刀具,要求能够实现主轴上刀具的快速及自动更换。5.2.25.2.2数控机床主轴的传动方式数控机床主轴的传动方式数控机床主运动调速范围很宽,其
6、主轴的传动方式主要有以下几种。1 1带有变速齿轮的主轴传动带有变速齿轮的主轴传动如图51(a)所示,这是大中型数控机床较常采用的配置方式,通过少数几对齿轮传动,扩大变速范围,确保低速时有较大的扭矩,以满足主轴输出扭矩特性的要求。滑移齿轮的移位大多采用液压拨叉或直接由液压缸驱动齿轮来实现。图51数控机床主传动的四种配置方式(a)齿轮变速;(b)带传动;(c)两个电机分别驱动;(d)调速电机直接驱动 2 2通过带传动的主轴传动通过带传动的主轴传动如图51(b)所示,这种传动主要用在转速较高、变速范围不大的小型数控机床上。电机本身的调整就能够满足要求,不用齿轮变速,可以避免由齿轮传动所引起的振动和噪
7、声。它适用于高速低转矩特性的主轴,常用的有多楔带和同步齿形带。数控机床上应用的多楔带又称为复合三角带,其横向断面呈多个楔形,楔角为40,如图52(a)所示。传递负载主要靠强力层。强力层中有多根钢丝绳或涤纶绳,具有较小的伸长率、较大的抗拉强度和抗弯疲劳强度。多楔带综合了V带和平带的优点,运转时振动小、发热少、运转平稳、重量小,因此可在40ms的线速度下使用。此外,多楔带与带轮的接触好、负载分布均匀,即使瞬时超载,也不会产生打滑,而传递功率比V带大20%30%,因此能够满足主传动高速、大转矩和不打滑的要求。多楔带在安装时需要较大的张紧力,使得主轴和电机承受较大的径向负载,这是多楔带的一大缺点。多楔
8、带按齿距可分为三种规格:J型齿距为2.4mm,L型齿距为4.8mm,M型齿距为5.5mm。可依据功率转速选择图选出所需的多楔带的型号。图52带的结构形式(a)多楔带;(b)同步齿形带 同步齿形带传动是一种综合了带传动和链传动优点的新型传动方式。同步齿形带的带型有梯形齿和圆弧齿,如图52(b)所示。同步齿形带的结构和传动如图53所示。带的工作面及带轮外圆上均制成齿形,通过带轮与轮齿相嵌合,进行无滑动的啮合传动。带内采用了加载后无弹性伸长的材料做强力层,以保持带的节距不变,可使主、从动带轮进行无相对滑动的同步传动。与一般带传动相比,同步齿形带传动具有如下优点:(1)传动效率高,可达98%以上;(2
9、)无滑动,传动比准确;(3)传动平稳,噪声小;(4)使用范围较广,速度可达50ms,速比可达10左右,传递功率由几瓦至数千瓦;(5)维修保养方便,不需要润滑;(6)安装时中心距要求严格,带与带轮制造工艺较复杂,成本高。图53同步齿形带的结构和传动 3 3用两个电机分别驱动主轴传动用两个电机分别驱动主轴传动用两个电机分别驱动主轴传动如图51(c)所示,它是上述两种方式的混合传动,具有上述两种方式的性能。高速时,由一个电机通过带传动;低速时,由另一个电机通过齿轮传动,齿轮起到降速和扩大变速范围的作用,这样就使恒功率区增大,扩大了变速范围,避免了低速时转矩不够且电机功率不能充分利用的问题。但两个电机
10、不能同时工作,也是一种浪费。4 4调速电机直接驱动主轴传动调速电机直接驱动主轴传动由调速电机直接驱动主轴传动如图51(d)所示。这种主轴传动方式是由电机直接带动主轴旋转,即直接驱动式,如图54所示。它大大简化了主轴箱体与主轴的结构,有效地提高了主轴部件的刚度,但主轴输出的扭矩小,电机发热对主轴的精度影响较大。图54直接驱动式 近年来出现了一种新式的内装电机主轴,即主轴与电机转子合为一体。其优点是主轴组件结构紧凑、重量和惯量小,可提高启动、停止的响应特性,并利于控制振动和噪声;缺点是电机运转产生的热量易使主轴产生热变形。因此,温度控制和冷却是使用内装电机主轴的关键问题。图55所示为日本研制的立式
11、加工中心主轴组件,其内装电机主轴最高转速可达180000rmin。图55日本研制的立式加工中心主轴组件 5.2.35.2.3主轴部件主轴部件主轴部件是机床的一个关键部件,它包括主轴的支撑和安装在主轴上的传动零件等。主轴部件质量的好坏直接影响到加工质量。1 1主轴端部的结构形状主轴端部的结构形状主轴端部用于安装刀具或夹持工件的夹具,在设计要求上,应能保证定位准确、安装可靠、联结牢固、装卸方便,并能传递足够的转矩。主轴端部的结构形状都已标准化,图56所示为普通机床和数控机床所通用的几种主轴端部的结构形式。图56主轴端部的结构形式(a)车床主轴端部;(b)铣、镗类机床主轴端部;(c)外圆磨床砂轮主轴
12、端部;(d)内圆磨床砂轮主轴端部;(e)普通镗杆装在钻床主轴上的端部;(f)组合机床主轴端部 2 2主轴轴承的类型主轴轴承的类型1)滚动轴承滚动轴承摩擦阻力小,可以预紧,润滑维护简单,能在一定的转速范围和载荷变动范围内稳定地工作。滚动轴承由专业化工厂生产,选购维修方便,在数控机床上被广泛采用。但与滑动轴承相比,滚动轴承的噪声大,滚动体数目有限,刚度是变化的,抗振性略差并且对转速有很大的限制。数控机床主轴组件在有可能的条件下,应尽量使用滚动轴承,特别是大多数立式主轴和主轴装在套筒内能够作轴向移动的主轴,这时滚动轴承可以用润滑脂润滑以避免漏油。图57为主轴常用的滚动轴承类型。图57主轴常用的滚动轴
13、承(a)锥孔双列圆柱滚子轴承;(b)双列推力向心球轴承;(c)双列圆锥滚子轴承;(d)带凸肩的双列空心圆柱滚子轴承;(e)带预紧弹簧的单列圆锥滚子轴承;(f)角接触滚子轴承 2)滑动轴承滑动轴承在数控机床上最常使用的是静压滑动轴承。静压滑动轴承的油膜压强是由液压缸从外界供给的,它和主轴转与不转、转速的高低无关(忽略旋转时的动压效应)。它的承载能力不随转速而变化,而且无磨损,启动和运转时摩擦阻力力矩相同,因此静压轴承的刚度大,回转精度高,但静压轴承需要一套液压装置,成本较高。3 3主轴轴承的支撑形式主轴轴承的支撑形式主轴轴承的支撑形式主要取决于主轴转速特性的速度因素和对主轴刚度的要求。主轴轴承常
14、见的支撑形式有以下三种,如图58所示。图58主轴轴承常见的支撑形式(a)形式一;(b)形式二;(c)形式三(1)前支撑采用双列短圆柱滚子轴承和60角接触双列向心推力球轴承组合,后支撑采用成对向心推力球轴承(见图58(a))。此配置可提高主轴的综合刚度,满足强力切削的要求。它普遍用于各类数控机床主轴。(2)前支撑采用高精度双列向心推力球轴承(见图58(b))。向心推力轴承有良好的高速性,主轴最高转速可达4000rmin,但它的承载能力小,适于高速、轻载、高精密的数控机床主轴。(3)前后支撑分别采用双列和单列圆锥滚子轴承(见图58(c))。这种轴承的径向和轴向刚度高,能承受重载荷,尤其是可承受较强
15、的动载荷。其安装、调整性能好,但这种支撑方式限制了主轴转速和精度,因此可用于中等精度、低速、重载的数控机床的主轴。4 4滚动轴承的间隙与预紧滚动轴承的间隙与预紧滚动轴承存在较大间隙时,载荷将集中作用于受力方向上的少数滚动体上,使得轴承刚度下降,承载能力下降,旋转精度变差。将滚动轴承进行适当预紧,使滚动体与内外圈滚道在接触处产生一定量的预变形,就可使受载后承载的滚动体数量增多,受力趋向均匀,从而提高轴承承载能力和刚度,有利于减少主轴回转轴线的漂移,提高旋转精度。但过盈量不宜太大,否则会使轴承的摩擦磨损加剧,承载能力显著下降。公差等级、轴承类型和工作条件不同的主轴组件,其轴承所需的预紧量各有所不同
16、。因此,主轴组件必须具备轴承间隙的调整机构。5 5滚动轴承的精度滚动轴承的精度主轴部件所用滚动轴承的精度有高级E、精密级D、特精级C和超精级B。前支撑的精度一般比后支撑的精度高一级,也可以用相同的精度等级。普通精度的机床通常前支撑取C,D级,后支撑用D,E级。特高精度的机床前后支撑均用B级。5.2.45.2.4主轴的准停主轴的准停主轴准停功能又称为主轴定位功能,即当主轴停止时,控制其停于固定位置,这是自动换刀所必需的功能。在自动换刀的镗铣加工中心上,切削的转矩通常是通过刀杆的端面键来传递的,这就要求主轴具有准确定位于圆周上特定角度的功能。主轴准停换刀如图55所示。当加工阶梯孔或精镗孔后退刀时,
17、为防止刀具与小阶梯孔碰撞或拉毛已精加工的孔表面,必须先让刀,再退刀,因此,刀具就必须具有定位功能。主轴准停阶梯孔或精镗孔如图510所示。图55主轴准停换刀示意图 图510主轴准停阶梯孔或精镗孔示意图 1 1机械准停控制机械准停控制图511为典型的V形槽轮定位盘机械准停原理示意图。带有V形槽的定位盘与主轴端面保持一定的关系,以确定定位位置。当准停指令到来时,首先使主轴减速至某一可以设定的低速转动,当无触点开关有效信号被检测到后,立即使主轴电动机停转并断开主轴传动链,此时主轴电动机与主轴传动件依惯性继续空转,同时准停油缸定位销伸出并压向定位盘。当定位盘V形槽与定位销正对时,由于油缸的压力,定位销插
18、入V形槽中,准停到LS2信号有效,表明准停动作完成。这里LS1为准停释放信号。采用这种准停方式,必须有一定的逻辑互锁,即LS2有效时才能进行下面诸如换刀等动作。而只有当LS1有效时才能启动主轴电动机正常运转。上述准停功能通常可由数控系统所配的可编程控制器完成。图511典型的V形槽轮定位盘机械准停原理示意图 2 2电气准停控制电气准停控制目前国内外中高档数控系统均采用电气准停控制。采用电气准停控制有如下优点:(1)简化机械结构。与机械准停相比,电气准停只需在这种旋转部件和固定部件上安装传感器即可。(2)缩短准停时间。准停时间包括在换刀时间内,而换刀时间是加工中心的一项重要指标。若采用电气准停,即
19、使主轴在高速转动时,也能快速定位于准停位置。(3)可靠性增加。由于无需复杂的机械、开关和液压缸等装置,也没有机械准停所形成的机械冲击,因此准停控制的寿命与可靠性大大增加。(4)性能价格比提高。由于简化了机械结构和强电控制逻辑,因此这部分的成本大大降低。但电气准停常作为选择功能,这是因为订购电气准停附件需另加费用。但总体来看,其性价比比机械准停大大提高。1)磁传感器主轴准停控制磁传感器主轴准停控制由主轴驱动自身完成。主轴驱动完成准停后会向数控装置回答完成信号ORE,然后数控系统再进行下面的工作。其基本结构如图68所示。当主轴转动或停止时,一旦接收到数控装置发来的准停开关信号,主轴立即加速或减速至
20、某一准停速度(可在主轴驱动装置中设定)。主轴到达准停速度且准停位置到达时(即磁发体与磁传感器对准),主轴立即减速至某一爬行速度(可在主轴驱动装置中设定)。然后当磁传感器信号出现时,主轴驱动立即进入磁传感器作为反馈元件的位置闭环控制,目标位置为准停位置。准停完成后,主轴驱动装置输出准停完成信号给数控装置,从而可进行自动换刀(ATC)或其他动作。磁发体与磁传感器在主轴上的位置如图512所示。图512磁发体与磁传感器在主轴上的位置 2)编码器主轴准停控制图513为编码器主轴准停控制原理图。可采用主轴电动机内部安装的编码器信号(来自于主轴驱动装置),也可以在主轴上直接安装另外一个编码器。采用前一种方式
21、要注意传动链对主轴准停精度的影响。主轴驱动装置内部可自动转换,使主轴驱动处于速度控制或位置控制状态。准停角度可由外部开关量(12位)设定,这一点与磁准停不同,磁准停的角度无法随意设定,要想调整准停位置,只有调整磁发体与磁传感器的相对位置。其步骤与传感器类似。图513编码器主轴准停控制原理图 3)数控系统主轴准停控制这种准停控制方式是由数控系统完成的,采用这种控制方式时需注意以下问题:(1)数控系统须具有主轴闭环控制功能。通常为避免冲击,主轴驱动都具有软启动功能,但这对主轴位置闭环控制会产生不良影响。此时,若位置增益过低,则准停精度和刚度(克服外界扰动的能力)不能满足要求;若过高,则会产生严重的
22、定位振荡现象。因此必须使主轴进入伺服状态,此时其特性与进给伺服系统相近,才可进行位置控制。(2)当采用电动机轴端编码器信号反馈给数控装置时,主轴传动链精度可能对主轴精度产生影响。数控系统控制主轴准停的原理与进给位置控制的原理非常相似,如图514所示。当采用数控系统控制主轴准停时,角度指定由数控系统内部设定,因此准停角度的设定更加方便。其工作原理是:数控系统执行准停指令M19或M19S*时,首先将M19送至可编程控制器,可编程控制器经译码送出控制信号使主轴驱动进入伺服状态,同时数控系统控制主轴电动机降速并寻找零位脉冲C,然后进入位置闭环控制状态。如执行:M19,无S指令,则主轴定位于相对于零位脉
23、冲C的某一缺省位置(可由数控系统设定)。如执行M19S*,则主轴定位于指令位置,也就是相对零位脉冲S*的角度位置。图514数控系统主轴准停控制原理图 例例M03S1000/主轴以1000rmin正转M19/主轴准停于缺省位置M19S100/主轴准停转至100处S1000/主轴再次以1000rmin正转M19S200/主轴准停至200处 5.2.55.2.5主轴的润滑与密封主轴的润滑与密封1 1主轴轴承的润滑方式主轴轴承的润滑方式在数控机床上,主轴轴承润滑方式有:油脂润滑、油液循环润滑、油雾润滑和油气润滑等。(1)油脂润滑方式。它是目前在数控机床的主轴轴承上最常用的润滑方式,特别是在前支撑轴承上
24、更为常用。当然,如果主轴箱中没有冷却润滑油系统,那么后支撑轴承和其他轴承一般也采用油脂润滑方式。主轴轴承油脂封入量通常为轴承空间容量的10%,切忌随意填满,因为油脂过多,会加剧主轴发热。若用油脂润滑方式,则要采用有效的密封措施,以防止切削液或润滑油进入轴承中。(2)油液循环润滑。在数控机床主轴上,有采用油液循环润滑方式的,例如装有GAMET轴承的主轴,即可使用这种方式。对一般主轴轴承来说,后支撑上采用这种润滑方式比较常见。恒温油液循环润滑冷却方式如图515所示。由油温自动控制箱控制的恒温油液,经油泵打到润轴箱,其中一路沿主轴前支撑套外圈上的螺旋槽流动,以带走主轴轴承所发出的热量;另一条路通过主
25、轴箱内的分油器,把恒温油喷射到传动齿轮和传动轴支撑轴承上,以带走它们所产生的热量。这种方式的润滑和降温效果都很好。图515恒温油液循环润滑冷却方式(3)油雾润滑方式。油雾润滑方式是将油液经高压气体雾化后,从喷嘴喷到需润滑的部位的润滑方式。由于是雾状油液,其吸热性好,又无油液搅拌作用,因此常用于高速主轴轴承的润滑。但是油雾容易吹出,污染环境,目前欧洲有些国家已经禁止使用这种润滑方式。(4)油气润滑方式。油气润滑方式是针对高速主轴而开发 的 新 型 润 滑 方 式。它 是 用 极 微 量 油(8 16min约0.03cm3油)润滑轴承,以抑制轴承发热。其润滑原理如图516所示。油箱中的油位开关和管
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数控机床 典型 部件
限制150内