《最新数学高二必考知识点.docx》由会员分享,可在线阅读,更多相关《最新数学高二必考知识点.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、最新数学高二必考知识点数学高二必考知识点一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质(4)(乘法单调性)3.绝对值不等式的性质(5)|a|-|b|ab|a|+|b|.(6)|a1+a2+an|a1|+|a2|+|an|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:|a|0;a20;(a-b)20(a、bR)a2+b22ab(a、bR,当且仅当a=b时取“=”号)2.不等式的证明(1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:作差变形判断符号.综合法:从已知条件出发,依据不等式的性质和已
2、证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.三、解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.解一元高次不等式;解分式不等式;解无理不等式;解指数不等式;解对数不等式;解带绝对值的不等式;解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数
3、、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|g(x)与-g(x)g(x)与f(x)g(x)或f(x)-g(x)(其中g(x)0)同解;与g(x)1时,af(x)ag(x)与f(x)g(x)同解,当0aag(x)与f(x)g(x)同高常见知识点1、向量的加法向量的加法满足平行四边形法则和三角形法则。AB+BC=AC。a+b=(x+x,y+y)。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0A
4、B-AC=CB.即“共同起点,指向被减”a=(x,y)b=(x,y)则a-b=(x-x,y-y).3、数乘向量实数和向量a的乘积是一个向量,记作a,且a=a。当0时,a与a同方向;当1时,表示向量a的有向线段在原方向(0)或反方向(0)上伸长为原来的倍;当0)或反方向(0)上缩短为原来的倍。数与向量的乘法满足下面的运算律结合律:(a)b=(ab)=(ab)。向量对于数的分配律(第一分配律):(+)a=a+a.数对于向量的分配律(第二分配律):(a+b)=a+b.数乘向量的消去律:如果实数0且a=b,那么a=b。如果a0且a=a,那么=。4、向量的的数量积定义:两个非零向量的夹角记为a,b,且a
5、,b0,。定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a|b|cosa,b;若a、b共线,则ab=+-ab。向量的数量积的坐标表示:ab=xx+yy。向量的数量积的运算率ab=ba(交换率);(a+b)c=ac+bc(分配率);向量的数量积的性质aa=|a|的平方。ab=ab=0。|ab|a|b|。高中数学怎么学高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接
6、受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。至于的讲究,每位同学可根
7、据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。l、要重视数学概念的理解。与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-l)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。2学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。
限制150内