高中数学必修4备课教案人教版(5篇).docx
《高中数学必修4备课教案人教版(5篇).docx》由会员分享,可在线阅读,更多相关《高中数学必修4备课教案人教版(5篇).docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 高中数学必修4备课教案人教版(5篇)高中数学必修4备课教案人教版篇一 1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的 2、叫做单位向量 3、的向量叫做平行向量,由于任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行 4、且的向量叫做相等向量 5、叫做相反向量 二、向量的表示方法:几何表示法、字母表示法、坐标表示法 三、向量的加减法及其坐标运算 四、实数与向量的乘积 定义:实数 与向量 的积是一个向量,记作 五、平面对量根本定理 假如e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量
2、a,有且只有一对实数1,2,使a=1e1+2e2 ,其中e1,e2叫基底 六、向量共线/平行的充要条件 七、非零向量垂直的充要条件 八、线段的定比分点 设是上的 两点,p是上_的任意一点,则存在实数,使_,则为点p分有向线段所成的比,同时,称p为有向线段的定比分点 定比分点坐标公式及向量式 九、平面对量的数量积 (1)设两个非零向量a和b,作oa=a,ob=b,则aob=叫a与b的夹角,其范围是0,|b|cos叫b在a上的投影 (2)|a|b|cos叫a与b的数量积,记作ab,即 ab=|a|b|cos (3)平面对量的数量积的坐标表示 十、平移 典例解读 1、给出以下命题:若|a|=|b|,
3、则a=b;若a,b,c,d是不共线的四点,则ab= dc是四边形abcd为平行四边形的充要条件;若a=b,b=c,则a=c;a=b的充要条件是|a|=|b|且ab;若ab,bc,则ac 其中,正确命题的序号是_ 2、已知a,b方向一样,且|a|=3,|b|=7,则|2a-b|=_ 3、若将向量a=(2,1)绕原点按逆时针方向旋转 得到向量b,则向量b的坐标为_ 4、以下算式中不正确的选项是( ) (a) ab+bc+ca=0 (b) ab-ac=bc (c) 0ab=0 (d)(a)=()a 5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( ) 、函数y=x2的图象按向量
4、a=(2,1)平移后得到的图象的函数表达式为( ) (a)y=(x-2)2-1 (b)y=(x+2)2-1 (c)y=(x-2)2+1 (d)y=(x+2)2+1 7、平面直角坐标系中,o为坐标原点,已知两点a(3,1),b(-1,3),若点c满意oc=oa+ob,其中a、r,且+=1,则点c的轨迹方程为( ) (a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5 (c)2x-y=0 (d)x+2y-5=0 8、设p、q是四边形abcd对角线ac、bd中点,bc=a,da=b,则 pq=_ 9、已知a(5,-1) b(-1,7) c(1,2),求abc中a平分线长 10、若向量a、
5、b的坐标满意a+b=(-2,-1),a-b=(4,-3),则ab等于( ) (a)-5 (b)5 (c)7 (d)-1 11、若a、b、c是非零的平面对量,其中任意两个向量都不共线,则( ) (a)(a)2(b)2=(ab)2 (b)|a+b|a-b| (c)(ab)c-(bc)a与b垂直 (d)(ab)c-(bc)a=0 12、设a=(1,0),b=(1,1),且(a+b)b,则实数的值是( ) (a)2 (b)0 (c)1 (d)-1/2 16、利用向量证明:abc中,m为bc的中点,则 ab2+ac2=2(am2+mb2) 17、在三角形abc中, =(2,3), =(1,k),且三角形
6、abc的一个内角为直角,求实数k的值 18、已知abc中,a(2,-1),b(3,2),c(-3,-1),bc边上的高为ad,求点d和向量 高中数学必修4备课教案人教版篇二 教学预备 教学目标 一、学问与技能 (1)理解并把握弧度制的定义;(2)领悟弧度制定义的合理性;(3)把握并运用弧度制表示的弧长公式、扇形面积公式;(4)娴熟地进展角度制与弧度制的换算;(5)角的集合与实数集 之间建立的一一对应关系.(6) 使学生通过弧度制的学习,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系. 二、过程与方法 创设情境,引入弧度制度量角的大小,通过探究理解并把握弧
7、度制的定义,领悟定义的合理性.依据弧度制的定义推导并运用弧长公式和扇形面积公式.以详细的实例学习角度制与弧度制的互化,能正确使用计算器. 三、情态与价值 通过本节的学习,使同学们把握另一种度量角的单位制-弧度制,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集 之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好预备. 教学重难点 重点: 理解并把握弧度制定义;娴熟地进展角度制与弧度
8、制地互化换算;弧度制的运用. 难点: 理解弧度制定义,弧度制的运用. 教学工具 投影仪等 教学过程 一、 创设情境,引入新课 师:有人问:海口到三亚有多远时,有人答复约250公里,但也有人答复约160英里,请问那一种答复是正确的?(已知1英里=1.6公里) 明显,两种答复都是正确的,但为什么会有不同的数值呢?那是由于所采纳的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里. 在角度的度量里面,也有类似的状况,一个是角度制,我们已经不再生疏,另外一个就是我们这节课要讨论的角的另外一种度量制-弧度制. 二、讲解新课 1.角度制规定:将一个圆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 备课 教案 人教版
限制150内