傅里叶变换与系统的频域分析.pptx
《傅里叶变换与系统的频域分析.pptx》由会员分享,可在线阅读,更多相关《傅里叶变换与系统的频域分析.pptx(137页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第四章第四章 傅里叶变换和系统的频域分析傅里叶变换和系统的频域分析 法国数学家、物理学家。1768年3月21日生于欧塞尔,1830年5月16日卒于巴黎。1807年向巴黎科学院呈交热的传播论文,推导出著名的热传导方程,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示,从而提出任一函数都可以展成三角函数的无穷级数。1822年在代表作热的分析理论中解决了热在非均匀加热的固体中分布传播问题,成为分析学在物理中应用的最早例证之一,对1919世纪数学和理论物理学的发展产生深远影响。傅里叶分析等理论均由此创始。(傅里叶级数(即三角级数)、傅里叶积分、傅里叶变换,这些统称为傅里叶分析。)其他贡献有:
2、最早使用定积分符号,改进了代数方程符号法则的证法和实根个数的判别法等。傅里叶简介傅里叶简介第1页/共137页4.1 4.1 信号分解为正交函数信号分解为正交函数4.1 4.1 信号分解为正交函数信号分解为正交函数一、矢量正交与正交分解一、矢量正交与正交分解 时域分析的要点是,以冲激函数为基本信号,任意输入信号可分解为一系列冲激函数;而yf(t)=h(t)*f(t)。本章将以正弦信号和虚指数信号e jt为基本信号,任意输入信号可分解为一系列不同频率的正弦信号或虚指数信号之和。这里用于系统分析的独立变量是频率。故称为频域分析。矢量Vx=(vx1,vx2,vx3)与Vy=(vy1,vy2,vy3)正
3、交的定义:其内积为0。即第2页/共137页4.1 4.1 信号分解为正交函数信号分解为正交函数由两两正交的矢量组成的矢量集合-称为正交矢量集。如三维空间中,以矢量vx=(2,0,0)、vy=(0,2,0)、vz=(0,0,2)所组成的集合就是一个正交矢量集。例如对于一个三维空间的矢量A=(2,5,8),可以用一个三维正交矢量集 vx,vy,vz分量的线性组合表示。即 A=vx+2.5 vy+4 vz 矢量空间正交分解的概念可推广到信号空间:在信号空间找到若干个相互正交的信号作为基本信号,使得信号空间中任意信号均可表示成它们的线性组合。第3页/共137页4.1 4.1 信号分解为正交函数信号分解
4、为正交函数第4页/共137页4.1 4.1 信号分解为正交函数信号分解为正交函数二、信号正交与正交函数集二、信号正交与正交函数集1.定义:定义:定义在(t1,t2)区间的两个函数 1(t)和 2(t),若满足(两函数的内积为0)则称 1(t)和 2(t)在区间(t1,t2)内正交正交。2.正交函数集:正交函数集:若n个函数 1(t),2(t),n(t)构成一个函数集,当这些函数在区间(t1,t2)内满足 则称此函数集为在区间(t1,t2)上的正交函数集正交函数集。第5页/共137页4.1 4.1 信号分解为正交函数信号分解为正交函数3.完备正交函数集:完备正交函数集:如果在正交函数集 1(t)
5、,2(t),n(t)之外,不存在任何函数 (t)(0)满足 则称此函数集为完备正交函数集完备正交函数集。例如:三角函数集1,cos(nt),sin(nt),n=1,2,和虚指数函数集ejnt,n=0,1,2,是两组典型的在区间(t0,t0+T)(T=2/)上的完备正交函数集。(i=1,2,n)第6页/共137页4.1 4.1 信号分解为正交函数信号分解为正交函数三、信号的正交分解三、信号的正交分解 设有n个函数 1(t),2(t),n(t)在区间(t1,t2)构成一个正交函数空间。将任一函数f(t)用这n个正交函数的线性组合来近似,可表示为 f(t)C1 1+C2 2+Cn n 问题:如何选择
6、各系数Cj使f(t)与近似函数之间误差在区间(t1,t2)内为最小。通常使误差的方均值(称为均方误差均方误差)最小。均方误差为:第7页/共137页4.1 4.1 信号分解为正交函数信号分解为正交函数为使上式最小(系数Cj变化时),有 展开上式中的被积函数,并求导。上式中只有两项不为0,写为:即:所以系数第8页/共137页4.1 4.1 信号分解为正交函数信号分解为正交函数代入,得最小均方误差 在用正交函数去近似f(t)时,所取得项数越多,即n越大,则均方误差越小。当n时(为完备正交函数集),均方误差为零。此时有 上式称为(Parseval)帕斯瓦尔方程(公式)帕斯瓦尔方程(公式),表明:在区间
7、(t1,t2),f(t)所含能量恒等于f(t)在完备正交函数集中分解的各正交分量能量的总和。函数f(t)可分解为无穷多项正交函数之和第9页/共137页4.2 4.2 傅里叶级数傅里叶级数4.2 4.2 周期信号的傅里叶级数周期信号的傅里叶级数一、傅里叶级数的三角形式一、傅里叶级数的三角形式 设周期信号f(t),其周期为T,角频率=2/T,当满足狄里赫利(Dirichlet)条件时,它可分解为如下三角级数 称为f(t)的傅里叶级数。系数an,bn称为傅里叶系数。可见,an 是n的偶函数,bn是n的奇函数。第10页/共137页4.2 4.2 傅里叶级数傅里叶级数式中,A0=a0 上式表明:周期信号
8、可分解为直流和许多余弦分量。其中,A0/2为直流分量;A1cos(t+1)称为基波或一次谐波,它的角频率与原周期信号相同;A2cos(2 t+2)称为二次谐波,它的频率是基波的2倍;一般而言,Ancos(n t+n)称为n次谐波。可见An是n的偶函数,n是n的奇函数。an=Ancos n,bn=Ansin n,n=1,2,将上式同频率项合并,可写为第11页/共137页4.2 4.2 傅里叶级数傅里叶级数例1:将图示方波信号f(t)展开为傅里叶级数。解:考虑到=2/T,可得:第12页/共137页4.2 4.2 傅里叶级数傅里叶级数信号的傅里叶级数展开式为:第13页/共137页4.2 4.2 傅里
9、叶级数傅里叶级数第14页/共137页4.2 4.2 傅里叶级数傅里叶级数第15页/共137页4.2 4.2 傅里叶级数傅里叶级数第16页/共137页4.2 4.2 傅里叶级数傅里叶级数第17页/共137页4.2 4.2 傅里叶级数傅里叶级数二、波形的对称性与谐波特性二、波形的对称性与谐波特性1.f(t)为偶函数为偶函数对称纵坐标对称纵坐标bn=0,展开为余弦级数。2.f(t)为奇函数为奇函数对称于原点对称于原点an=0,展开为正弦级数。实际上,任意函数f(t)都可分解为奇函数和偶函数两部分,即 f(t)=fod(t)+fev(t)由于f(-t)=fod(-t)+fev(-t)=-fod(t)+
10、fev(t)所以 第18页/共137页4.2 4.2 傅里叶级数傅里叶级数3.f(t)为奇谐函数为奇谐函数f(t)=f(tT/2)此时,其傅里叶级数中只含奇次谐波分量,而不含偶次谐波分量即:a0=a2=b2=b4=0 4.f(t)为偶谐函数为偶谐函数f(t)=f(tT/2)此时,其傅里叶级数中只含偶次谐波分量,而不含奇次谐波分量即 a1=a3=b1=b3=0 第19页/共137页4.2 4.2 傅里叶级数傅里叶级数三、傅里叶级数的指数形式三、傅里叶级数的指数形式 三角形式的傅里叶级数,含义比较明确,但运算常感不便,因而经常采用指数形式的傅里叶级数。可从三角形式推出:利用 cosx=(ejx+e
11、jx)/2 上式中第三项的n用n代换,A n=An,n=n,则上式写为 第20页/共137页4.2 4.2 傅里叶级数傅里叶级数令A0=A0 e j 0 e j0 t,0=0 所以令复数称其为复傅里叶系数,简称傅里叶系数。第21页/共137页4.2 4.2 傅里叶级数傅里叶级数 n=0,1,2,表明:任意周期信号f(t)可分解为许多不同频率的虚指数信号之和。Fn 是频率为n 的分量的系数,F0=A0/2为直流分量。第22页/共137页4.2 4.2 傅里叶级数傅里叶级数例2:求如图所示周期信号的指数型傅里叶级数。解:第23页/共137页4.2 4.2 傅里叶级数傅里叶级数指数型傅里叶级数为:第
12、24页/共137页4.3 4.3 周期信号的频谱周期信号的频谱4.3 4.3 周期信号的频谱及特点周期信号的频谱及特点一、信号频谱的概念一、信号频谱的概念 从广义上说,信号的某种特征量随信号频率变化的关系,称为信号的频谱,所画出的图形称为信号的频谱图。周期信号的频谱是指周期信号中各次谐波幅值、相位随频率的变化关系,即 将An和 n的关系分别画在以为横轴的平面上得到的两个图,分别称为振幅频谱图和相位频谱图。因为n0,所以称这种频谱为单边谱。也可画|Fn|和 n的关系,称为双边谱。若Fn为实数,也可直接画Fn。第25页/共137页4.3 4.3 周期信号的频谱周期信号的频谱例:周期信号 f(t)=
13、试求该周期信号的基波周期T,基波角频率,画出它的单边频谱图,并求f(t)的平均功率。解解 首先应用三角公式改写f(t)的表达式,即显然1是该信号的直流分量。的周期T1=8的周期T2=6所以f(t)的周期T=24,基波角频率=2/T=/12根据帕斯瓦尔等式,其功率为 P=第26页/共137页4.3 4.3 周期信号的频谱周期信号的频谱是f(t)的/4/12=3次谐波分量;是f(t)的/3/12=4次谐波分量;画出f(t)的单边振幅频谱图、相位频谱图如下图:第27页/共137页4.3 4.3 周期信号的频谱周期信号的频谱二、周期信号频谱的特点二、周期信号频谱的特点举例:有一幅度为1,脉冲宽度为 的
14、周期矩形脉冲,其周期为T,如图所示。求频谱。令Sa(x)=sin(x)/x(取样函数)第28页/共137页4.3 4.3 周期信号的频谱周期信号的频谱,n=0,1,2,Fn为实数,可直接画成一个频谱图。设T=4画图。零点为所以,m为整数。特点:(1)周期信号的频谱具有谐波(离散)性。谱线位置是基频的整数倍;(2)一般具有收敛性。总趋势减小。第29页/共137页4.3 4.3 周期信号的频谱周期信号的频谱谱线的结构与波形参数的关系:(a)T一定,变小,此时(谱线间隔)不变。两零点之间的谱线数目:1/=(2/)/(2/T)=T/增多。(b)一定,T增大,间隔 减小,频谱变密。幅度减小。如果周期T无
15、限增长(这时就成为非周期信号),那么,谱线间隔将趋近于零,周期信号的离散频谱离散频谱就过渡到非周期信号的连续频谱连续频谱。各频率分量的幅度也趋近于无穷小。第30页/共137页4.2 4.2 傅里叶级数傅里叶级数三、周期信号的功率三、周期信号的功率Parseval等式等式含义:直流和n次谐波分量在1 电阻上消耗的平均功 率之和。周期信号一般是功率信号,其平均功率为表明:对于周期信号,在时域中求得的信号功率与在 频域中求得的信号功率相等。第31页/共137页4.4 4.4 傅里叶变换傅里叶变换4.4 4.4 非周期信号的频谱非周期信号的频谱傅里叶变换傅里叶变换一、傅里叶变换一、傅里叶变换 非周期信
16、号f(t)可看成是周期T时的周期信号。前已指出当周期T趋近于无穷大时,谱线间隔 趋近于无穷小,从而信号的频谱变为连续频谱。各频率分量的幅度也趋近于无穷小,不过,这些无穷小量之间仍有差别。为了描述非周期信号的频谱特性,引入频谱密度的概念。令(单位频率上的频谱)称F(j)为频谱密度函数。第32页/共137页4.4 4.4 傅里叶变换傅里叶变换考虑到:T,无穷小,记为d;n (由离散量变为连续量),而同时,于是,傅里叶变换式傅里叶变换式“-”傅里叶反变换式傅里叶反变换式“+”F(j)称为f(t)的傅里叶变换或频谱密度函数,简称频谱。f(t)称为F(j)的傅里叶反变换或原函数。根据傅里叶级数第33页/
17、共137页4.4 4.4 傅里叶变换傅里叶变换也可简记为 F(j)=F F f(t)f(t)=F F 1F(j)或 f(t)F(j)F(j)一般是复函数,写为 F(j)=|F(j)|e j ()=R()+jX()说明:(1)前面推导并未遵循严格的数学步骤。可证明,函数 f(t)的傅里叶变换存在的充分条件:(2)用下列关系还可方便计算一些积分第34页/共137页4.4 4.4 傅里叶变换傅里叶变换二、常用函数的傅里叶变换二、常用函数的傅里叶变换1.单边指数函数单边指数函数f(t)=e t(t),02.双边指数函数双边指数函数f(t)=et ,0 第35页/共137页4.4 4.4 傅里叶变换傅里
18、叶变换3.门函数门函数(矩形脉冲矩形脉冲)4.冲激函数冲激函数(t)、(t)第36页/共137页4.4 4.4 傅里叶变换傅里叶变换5.常数常数1有一些函数不满足绝对可积这一充分条件,如1,(t)等,但傅里叶变换却存在。直接用定义式不好求解。可构造一函数序列fn(t)逼近f(t),即而fn(t)满足绝对可积条件,并且fn(t)的傅里叶变换所形成的序列Fn(j)是极限收敛的。则可定义f(t)的傅里叶变换F(j)为这样定义的傅里叶变换也称为广义傅里叶变换。第37页/共137页4.4 4.4 傅里叶变换傅里叶变换构造 f(t)=e-t ,0 所以又因此,1212()另一种求法:(t)1(t)1代入反
19、变换定义式,有将 t t,t-t-再根据傅里叶变换定义式,得第38页/共137页6.符号函数符号函数4.4 4.4 傅里叶变换傅里叶变换7.阶跃函数阶跃函数(t)构造第39页/共137页4.4 4.4 傅里叶变换傅里叶变换归纳记忆:1.F F 变换对变换对2.常用函数常用函数 F F 变换对:变换对:(t)(t)e-t(t)g(t)sgn(t)e|t|(t)1 12()第40页/共137页4.5 4.5 傅里叶变换的性质傅里叶变换的性质4.5 4.5 傅里叶变换的性质傅里叶变换的性质一、线性一、线性(Linear Property)Proof:thenIf第41页/共137页4.5 4.5 傅
20、里叶变换的性质傅里叶变换的性质For example F(j)=?Ans:f(t)=f1(t)g2(t)f1(t)=1 2()g2(t)2Sa()F(j)=2()-2Sa()-第42页/共137页4.5 4.5 傅里叶变换的性质傅里叶变换的性质二、奇偶性二、奇偶性(Parity)If f(t)is real,thenSo that(1)R()=R(),X()=X()|F(j)|=|F(j)|,()=()(2)If f(t)=f(-t),then X()=0,F(j)=R()If f(t)=-f(-t),then R()=0,F(j)=jX()第43页/共137页4.5 4.5 傅里叶变换的性质
21、傅里叶变换的性质三、对称性三、对称性(Symmetrical Property)If f(t)F(j)thenProof:(1)in(1)t,t then(2)in(2)-then F(jt)2f()endF(jt)2f()第44页/共137页4.5 4.5 傅里叶变换的性质傅里叶变换的性质For example F(j)=?Ans:if =1,第45页/共137页4.5 4.5 傅里叶变换的性质傅里叶变换的性质四、尺度变换性质四、尺度变换性质(Scaling Transform Property)If f(t)F(j)then where“a”is a nonzero real consta
22、nt.Proof:F F f(a t)=For a 0 ,F F f(a t)for a 0 ,F F f(a t)That is ,f(a t)Also,letting a=-1,f(-t)F(-j)第46页/共137页4.5 4.5 傅里叶变换的性质傅里叶变换的性质For example f(t)=F(j)=?Ans:Using symmetry,using scaling property with a=-1,so that,第47页/共137页4.5 4.5 傅里叶变换的性质傅里叶变换的性质五、时移性质五、时移性质(Time shifting Property)If f(t)F(j)t
23、henwhere“t0”is real constant.Proof:F F f(t t0)第48页/共137页4.5 4.5 傅里叶变换的性质傅里叶变换的性质For example F(j)=?f1(t)=g6(t-5),f2(t)=g2(t-5)g6(t-5)g2(t-5)F(j)=+Ans:f(t)=f1(t)+f2(t)第49页/共137页4.5 4.5 傅里叶变换的性质傅里叶变换的性质For example Given that f(t)F(j),find f(at b)?Ans:f(t b)e-jb F(j)f(at b)orf(at)f(at b)=第50页/共137页4.5 4
24、.5 傅里叶变换的性质傅里叶变换的性质六、频移性质六、频移性质(Frequency Shifting Property)If f(t)F(j)thenProof:where“0”is real constant.F F e j0t f(t)=F j(-0)endFor example 1f(t)=ej3t F(j)=?Ans:1 2()ej3t 1 2(-3)第51页/共137页4.5 4.5 傅里叶变换的性质傅里叶变换的性质For example 2f(t)=cos0t F(j)=?Ans:F(j)=(-0)+(+0)For example 3Given that f(t)F(j)The m
25、odulated signal f(t)cos0t?第52页/共137页4.5 4.5 傅里叶变换的性质傅里叶变换的性质七、卷积定理七、卷积定理(Convolution Property)1、Convolution in time domain:If f1(t)F1(j),f2(t)F2(j)Then f1(t)*f2(t)F1(j)F2(j)2、Convolution in frequency domain:If f1(t)F1(j),f2(t)F2(j)Then f1(t)f2(t)F1(j)*F2(j)第53页/共137页4.5 4.5 傅里叶变换的性质傅里叶变换的性质Proof:Usi
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 傅里叶变换 系统 分析
限制150内